本文整理匯總了Python中gym.undo_logger_setup方法的典型用法代碼示例。如果您正苦於以下問題:Python gym.undo_logger_setup方法的具體用法?Python gym.undo_logger_setup怎麽用?Python gym.undo_logger_setup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym
的用法示例。
在下文中一共展示了gym.undo_logger_setup方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setup
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import undo_logger_setup [as 別名]
def setup(exp, single_threaded):
import gym
gym.undo_logger_setup()
from . import policies, tf_util
config = Config(**exp['config'])
if 'env_id' in exp:
env = gym.make(exp['env_id'])
elif 'env_target' in exp:
env_target = exp['env_target']
(module_str, cls_str) = env_target.split(":")
module = importlib.import_module(module_str)
cls = getattr(module, cls_str)
env = cls(**exp['env_params'])
else:
raise NotImplementedError
sess = make_session(single_threaded=single_threaded)
policy = getattr(policies, exp['policy']['type'])(env.observation_space, env.action_space, **exp['policy']['args'])
tf_util.initialize()
return config, env, sess, policy
示例2: test_smoke
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import undo_logger_setup [as 別名]
def test_smoke(env_id):
"""Check that environments start up without errors and that we can extract rewards and observations"""
gym.undo_logger_setup()
logging.getLogger().setLevel(logging.INFO)
env = gym.make(env_id)
if env.metadata.get('configure.required', False):
if os.environ.get('FORCE_LATEST_UNIVERSE_DOCKER_RUNTIMES'): # Used to test universe-envs in CI
configure_with_latest_docker_runtime_tag(env)
else:
env.configure(remotes=1)
env = wrappers.Unvectorize(env)
env.reset()
_rollout(env, timestep_limit=60*30) # Check a rollout
示例3: setup
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import undo_logger_setup [as 別名]
def setup(exp, single_threaded):
import gym
gym.undo_logger_setup()
from . import policies, tf_util
config = Config(**exp['config'])
env = gym.make(exp['env_id'])
sess = make_session(single_threaded=single_threaded)
policy = getattr(policies, exp['policy']['type'])(env.observation_space, env.action_space, **exp['policy']['args'])
tf_util.initialize()
return config, env, sess, policy
示例4: test_nice_vnc_semantics_match
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import undo_logger_setup [as 別名]
def test_nice_vnc_semantics_match(spec, matcher, wrapper):
# Check that when running over VNC or using the raw environment,
# semantics match exactly.
gym.undo_logger_setup()
logging.getLogger().setLevel(logging.INFO)
spaces.seed(0)
vnc_env = spec.make()
if vnc_env.metadata.get('configure.required', False):
vnc_env.configure(remotes=1)
vnc_env = wrapper(vnc_env)
vnc_env = wrappers.Unvectorize(vnc_env)
env = gym.make(spec._kwargs['gym_core_id'])
env.seed(0)
vnc_env.seed(0)
# Check that reset observations work
reset(matcher, env, vnc_env, stage='initial reset')
# Check a full rollout
rollout(matcher, env, vnc_env, timestep_limit=50, stage='50 steps')
# Reset to start a new episode
reset(matcher, env, vnc_env, stage='reset to new episode')
# Check that a step into the next episode works
rollout(matcher, env, vnc_env, timestep_limit=1, stage='1 step in new episode')
# Make sure env can be reseeded
env.seed(1)
vnc_env.seed(1)
reset(matcher, env, vnc_env, 'reseeded reset')
rollout(matcher, env, vnc_env, timestep_limit=1, stage='reseeded step')
示例5: env_factory
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import undo_logger_setup [as 別名]
def env_factory(cmdl, mode):
# Undo the default logger and configure a new one.
gym.undo_logger_setup()
logger = logging.getLogger()
logger.setLevel(logging.WARNING)
print(clr("[Main] Constructing %s environment." % mode, attrs=['bold']))
env = gym.make(cmdl.env_name)
if hasattr(cmdl, 'rescale_dims'):
state_dims = (cmdl.rescale_dims, cmdl.rescale_dims)
else:
state_dims = env.observation_space.shape[0:2]
env_class, hist_len, cuda = cmdl.env_class, cmdl.hist_len, cmdl.cuda
if mode == "training":
env = PreprocessFrames(env, env_class, hist_len, state_dims, cuda)
if hasattr(cmdl, 'reward_clamp') and cmdl.reward_clamp:
env = SqueezeRewards(env)
if hasattr(cmdl, 'done_after_lost_life') and cmdl.done_after_lost_life:
env = DoneAfterLostLife(env)
print('-' * 50)
return env
elif mode == "evaluation":
if cmdl.eval_env_name != cmdl.env_name:
print(clr("[%s] Warning! evaluating on a different env: %s"
% ("Main", cmdl.eval_env_name), 'red', attrs=['bold']))
env = gym.make(cmdl.eval_env_name)
env = PreprocessFrames(env, env_class, hist_len, state_dims, cuda)
env = EvaluationMonitor(env, cmdl)
print('-' * 50)
return env