當前位置: 首頁>>代碼示例>>Python>>正文


Python gym.spec方法代碼示例

本文整理匯總了Python中gym.spec方法的典型用法代碼示例。如果您正苦於以下問題:Python gym.spec方法的具體用法?Python gym.spec怎麽用?Python gym.spec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gym的用法示例。


在下文中一共展示了gym.spec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: configure

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def configure(self, n=1, pool_size=None, episode_limit=None):
        self.n = n
        self.envs = [self.spec.make() for _ in range(self.n)]

        if pool_size is None:
            pool_size = min(len(self.envs), multiprocessing.cpu_count() - 1)
            pool_size = max(1, pool_size)

        self.worker_n = []
        m = int((self.n + pool_size - 1) / pool_size)
        for i in range(0, self.n, m):
            envs = self.envs[i:i+m]
            self.worker_n.append(Worker(envs, i))

        if episode_limit is not None:
            self._episode_id.episode_limit = episode_limit 
開發者ID:openai,項目名稱:universe,代碼行數:18,代碼來源:multiprocessing_env.py

示例2: __init__

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def __init__(self, env, gym_core_id=None):
        super(GymCoreAction, self).__init__(env)

        if gym_core_id is None:
            # self.spec is None while inside of the make, so we need
            # to pass gym_core_id in explicitly there. This case will
            # be hit when instantiating by hand.
            gym_core_id = self.spec._kwargs['gym_core_id']

        spec = gym.spec(gym_core_id)
        raw_action_space = gym_core_action_space(gym_core_id)

        self._actions = raw_action_space.actions
        self.action_space = gym_spaces.Discrete(len(self._actions))

        if spec._entry_point.startswith('gym.envs.atari:'):
            self.key_state = translator.AtariKeyState(gym.make(gym_core_id))
        else:
            self.key_state = None 
開發者ID:openai,項目名稱:universe,代碼行數:21,代碼來源:gym_core.py

示例3: test_spec_from_gym_space_when_simplify_box_bounds_false

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_spec_from_gym_space_when_simplify_box_bounds_false(self):
    # testing on gym.spaces.Dict which makes recursive calls to
    # _spec_from_gym_space
    box_space = gym.spaces.Box(-1.0, 1.0, (2,))
    dict_space = gym.spaces.Dict({'box1': box_space, 'box2': box_space})
    spec = gym_wrapper.spec_from_gym_space(
        dict_space, simplify_box_bounds=False)

    self.assertEqual((2,), spec['box1'].shape)
    self.assertEqual((2,), spec['box2'].shape)
    self.assertEqual(np.float32, spec['box1'].dtype)
    self.assertEqual(np.float32, spec['box2'].dtype)
    self.assertEqual('box1', spec['box1'].name)
    self.assertEqual('box2', spec['box2'].name)
    np.testing.assert_array_equal(np.array([-1, -1], dtype=np.int),
                                  spec['box1'].minimum)
    np.testing.assert_array_equal(np.array([1, 1], dtype=np.int),
                                  spec['box1'].maximum)
    np.testing.assert_array_equal(np.array([-1, -1], dtype=np.int),
                                  spec['box2'].minimum)
    np.testing.assert_array_equal(np.array([1, 1], dtype=np.int),
                                  spec['box2'].maximum) 
開發者ID:tensorflow,項目名稱:agents,代碼行數:24,代碼來源:gym_wrapper_test.py

示例4: test_wrapped_cartpole_specs

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_wrapped_cartpole_specs(self):
    # Note we use spec.make on gym envs to avoid getting a TimeLimit wrapper on
    # the environment.
    cartpole_env = gym.spec('CartPole-v1').make()
    env = gym_wrapper.GymWrapper(cartpole_env)

    action_spec = env.action_spec()
    self.assertEqual((), action_spec.shape)
    self.assertEqual(0, action_spec.minimum)
    self.assertEqual(1, action_spec.maximum)

    observation_spec = env.observation_spec()
    self.assertEqual((4,), observation_spec.shape)
    self.assertEqual(np.float32, observation_spec.dtype)
    high = np.array([
        4.8,
        np.finfo(np.float32).max, 2 / 15.0 * math.pi,
        np.finfo(np.float32).max
    ])
    np.testing.assert_array_almost_equal(-high, observation_spec.minimum)
    np.testing.assert_array_almost_equal(high, observation_spec.maximum) 
開發者ID:tensorflow,項目名稱:agents,代碼行數:23,代碼來源:gym_wrapper_test.py

示例5: test_limit_duration_wrapped_env_forwards_calls

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_limit_duration_wrapped_env_forwards_calls(self):
    cartpole_env = gym.spec('CartPole-v1').make()
    env = gym_wrapper.GymWrapper(cartpole_env)
    env = wrappers.TimeLimit(env, 10)

    action_spec = env.action_spec()
    self.assertEqual((), action_spec.shape)
    self.assertEqual(0, action_spec.minimum)
    self.assertEqual(1, action_spec.maximum)

    observation_spec = env.observation_spec()
    self.assertEqual((4,), observation_spec.shape)
    high = np.array([
        4.8,
        np.finfo(np.float32).max, 2 / 15.0 * math.pi,
        np.finfo(np.float32).max
    ])
    np.testing.assert_array_almost_equal(-high, observation_spec.minimum)
    np.testing.assert_array_almost_equal(high, observation_spec.maximum) 
開發者ID:tensorflow,項目名稱:agents,代碼行數:21,代碼來源:wrappers_test.py

示例6: test_with_varying_observation_specs

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_with_varying_observation_specs(
      self, observation_keys, observation_shapes, observation_dtypes):
    """Vary the observation spec and step the environment."""
    obs_spec = collections.OrderedDict()
    for idx, key in enumerate(observation_keys):
      obs_spec[key] = array_spec.ArraySpec(observation_shapes[idx],
                                           observation_dtypes)
    action_spec = array_spec.BoundedArraySpec((), np.int32, -10, 10)

    env = random_py_environment.RandomPyEnvironment(
        obs_spec, action_spec=action_spec)
    env = wrappers.FlattenObservationsWrapper(env)
    time_step = env.step(
        array_spec.sample_bounded_spec(action_spec, np.random.RandomState()))
    # Check that all observations returned from environment is packed into one
    # dimension.
    expected_shape = self._get_expected_shape(obs_spec, obs_spec.keys())
    self.assertEqual(time_step.observation.shape, expected_shape)
    self.assertEqual(
        env.observation_spec(),
        array_spec.ArraySpec(
            shape=expected_shape,
            dtype=observation_dtypes,
            name='packed_observations')) 
開發者ID:tensorflow,項目名稱:agents,代碼行數:26,代碼來源:wrappers_test.py

示例7: test_batch_env

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_batch_env(self):
    """Vary the observation spec and step the environment."""
    obs_spec = collections.OrderedDict({
        'obs1': array_spec.ArraySpec((1,), np.int32),
        'obs2': array_spec.ArraySpec((2,), np.int32),
    })

    action_spec = array_spec.BoundedArraySpec((), np.int32, -10, 10)

    # Generate a randomy py environment with batch size.
    batch_size = 4
    env = random_py_environment.RandomPyEnvironment(
        obs_spec, action_spec=action_spec, batch_size=batch_size)

    env = wrappers.FlattenObservationsWrapper(env)
    time_step = env.step(
        array_spec.sample_bounded_spec(action_spec, np.random.RandomState()))

    expected_shape = self._get_expected_shape(obs_spec, obs_spec.keys())
    self.assertEqual(time_step.observation.shape,
                     (batch_size, expected_shape[0]))
    self.assertEqual(
        env.observation_spec(),
        array_spec.ArraySpec(
            shape=expected_shape, dtype=np.int32, name='packed_observations')) 
開發者ID:tensorflow,項目名稱:agents,代碼行數:27,代碼來源:wrappers_test.py

示例8: __init__

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def __init__(self, env_id):
        self.worker_n = None

        # Pull the relevant info from a transient env instance
        self.spec = gym.spec(env_id)
        env = self.spec.make()

        current_metadata = self.metadata
        self.metadata = env.metadata.copy()
        self.metadata.update(current_metadata)

        self.action_space = env.action_space
        self.observation_space = env.observation_space
        self.reward_range = env.reward_range 
開發者ID:openai,項目名稱:universe,代碼行數:16,代碼來源:multiprocessing_env.py

示例9: __init__

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def __init__(self, gym_core_id, fps=60, vnc_pixels=True):
        super(GymCoreSyncEnv, self).__init__(gym_core_id, fps=fps)
        # Metadata has already been cloned
        self.metadata['semantics.async'] = False

        self.gym_core_id = gym_core_id
        self.vnc_pixels = vnc_pixels

        if not vnc_pixels:
            self._core_env = gym.spec(gym_core_id).make()
        else:
            self._core_env = None 
開發者ID:openai,項目名稱:universe,代碼行數:14,代碼來源:vnc_core_env.py

示例10: WrappedGymCoreEnv

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def WrappedGymCoreEnv(gym_core_id, fps=None, rewarder_observation=False):
    # Don't need to store the ID on the instance; it'll be retrieved
    # directly from the spec
    env = wrap(envs.VNCEnv(fps=fps))
    if rewarder_observation:
        env = GymCoreObservation(env, gym_core_id=gym_core_id)
    return env 
開發者ID:openai,項目名稱:universe,代碼行數:9,代碼來源:__init__.py

示例11: WrappedGymCoreSyncEnv

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def WrappedGymCoreSyncEnv(gym_core_id, fps=60, rewarder_observation=False):
    spec = gym.spec(gym_core_id)
    env = gym_core_sync.GymCoreSync(BlockingReset(wrap(envs.VNCEnv(fps=fps))))
    if rewarder_observation:
        env = GymCoreObservation(env, gym_core_id=gym_core_id)
    elif spec._entry_point.startswith('gym.envs.atari:'):
        env = CropAtari(env)

    return env 
開發者ID:openai,項目名稱:universe,代碼行數:11,代碼來源:__init__.py

示例12: test_nice_vnc_semantics_match

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def test_nice_vnc_semantics_match(spec, matcher, wrapper):
    # Check that when running over VNC or using the raw environment,
    # semantics match exactly.
    gym.undo_logger_setup()
    logging.getLogger().setLevel(logging.INFO)

    spaces.seed(0)

    vnc_env = spec.make()
    if vnc_env.metadata.get('configure.required', False):
        vnc_env.configure(remotes=1)
    vnc_env = wrapper(vnc_env)
    vnc_env = wrappers.Unvectorize(vnc_env)

    env = gym.make(spec._kwargs['gym_core_id'])

    env.seed(0)
    vnc_env.seed(0)

    # Check that reset observations work
    reset(matcher, env, vnc_env, stage='initial reset')

    # Check a full rollout
    rollout(matcher, env, vnc_env, timestep_limit=50, stage='50 steps')

    # Reset to start a new episode
    reset(matcher, env, vnc_env, stage='reset to new episode')

    # Check that a step into the next episode works
    rollout(matcher, env, vnc_env, timestep_limit=1, stage='1 step in new episode')

    # Make sure env can be reseeded
    env.seed(1)
    vnc_env.seed(1)
    reset(matcher, env, vnc_env, 'reseeded reset')
    rollout(matcher, env, vnc_env, timestep_limit=1, stage='reseeded step') 
開發者ID:openai,項目名稱:universe,代碼行數:38,代碼來源:test_core_envs_semantics.py

示例13: create_env

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def create_env(env_id, client_id, remotes, **kwargs):
    spec = gym.spec(env_id)

    if spec.tags.get('flashgames', False):
        return create_flash_env(env_id, client_id, remotes, **kwargs)
    elif spec.tags.get('atari', False) and spec.tags.get('vnc', False):
        return create_vncatari_env(env_id, client_id, remotes, **kwargs)
    else:
        # Assume atari.
        assert "." not in env_id  # universe environments have dots in names.
        return create_atari_env(env_id) 
開發者ID:openai,項目名稱:universe-starter-agent,代碼行數:13,代碼來源:envs.py

示例14: __init__

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def __init__(self, args, task_q, result_q, actor_id, monitor, pms, net_class):
        multiprocessing.Process.__init__(self)
        self.actor_id = actor_id
        self.task_q = task_q
        self.result_q = result_q
        self.args = args
        self.monitor = monitor
        self.pms = pms
        self.net_class = net_class
        # pms.max_path_length = gym.spec(args.environment_name).timestep_limit 
開發者ID:jjkke88,項目名稱:RL_toolbox,代碼行數:12,代碼來源:storage_continous_parallel_image.py

示例15: __init__

# 需要導入模塊: import gym [as 別名]
# 或者: from gym import spec [as 別名]
def __init__(self, args, task_q, result_q, actor_id, monitor, pms, net_class, env_class):
        multiprocessing.Process.__init__(self)
        self.actor_id = actor_id
        self.task_q = task_q
        self.result_q = result_q
        self.args = args
        self.monitor = monitor
        self.pms = pms
        self.net_class = net_class
        self.env_class = env_class
        # pms.max_path_length = gym.spec(args.environment_name).timestep_limit 
開發者ID:jjkke88,項目名稱:RL_toolbox,代碼行數:13,代碼來源:storage_continous_parallel.py


注:本文中的gym.spec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。