當前位置: 首頁>>代碼示例>>Python>>正文


Python spaces.Tuple方法代碼示例

本文整理匯總了Python中gym.spaces.Tuple方法的典型用法代碼示例。如果您正苦於以下問題:Python spaces.Tuple方法的具體用法?Python spaces.Tuple怎麽用?Python spaces.Tuple使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gym.spaces的用法示例。


在下文中一共展示了spaces.Tuple方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self, env, eat_thresh=0.5, max_food_health=10, respawn_time=np.inf,
                 food_rew_type='selfish', reward_scale=1.0, reward_scale_obs=False):
        super().__init__(env)
        self.eat_thresh = eat_thresh
        self.max_food_health = max_food_health
        self.respawn_time = respawn_time
        self.food_rew_type = food_rew_type
        self.n_agents = self.metadata['n_agents']

        if type(reward_scale) not in [list, tuple, np.ndarray]:
            reward_scale = [reward_scale, reward_scale]
        self.reward_scale = reward_scale
        self.reward_scale_obs = reward_scale_obs

        # Reset obs/action space to match
        self.max_n_food = self.metadata['max_n_food']
        self.curr_n_food = self.metadata['curr_n_food']
        self.max_food_size = self.metadata['food_size']
        food_dim = 5 if self.reward_scale_obs else 4
        self.observation_space = update_obs_space(self.env, {'food_obs': (self.max_n_food, food_dim),
                                                             'food_health': (self.max_n_food, 1),
                                                             'food_eat': (self.max_n_food, 1)})
        self.action_space.spaces['action_eat_food'] = Tuple([MultiDiscrete([2] * self.max_n_food)
                                                             for _ in range(self.n_agents)]) 
開發者ID:openai,項目名稱:multi-agent-emergence-environments,代碼行數:26,代碼來源:food.py

示例2: _check_unsupported_obs_spaces

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def _check_unsupported_obs_spaces(env: gym.Env, observation_space: spaces.Space) -> None:
    """Emit warnings when the observation space used is not supported by Stable-Baselines."""

    if isinstance(observation_space, spaces.Dict) and not isinstance(env, gym.GoalEnv):
        warnings.warn("The observation space is a Dict but the environment is not a gym.GoalEnv "
                      "(cf https://github.com/openai/gym/blob/master/gym/core.py), "
                      "this is currently not supported by Stable Baselines "
                      "(cf https://github.com/hill-a/stable-baselines/issues/133), "
                      "you will need to use a custom policy. "
                      )

    if isinstance(observation_space, spaces.Tuple):
        warnings.warn("The observation space is a Tuple,"
                      "this is currently not supported by Stable Baselines "
                      "(cf https://github.com/hill-a/stable-baselines/issues/133), "
                      "you will need to flatten the observation and maybe use a custom policy. "
                      ) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:19,代碼來源:env_checker.py

示例3: _check_obs

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def _check_obs(obs: Union[tuple, dict, np.ndarray, int],
               observation_space: spaces.Space,
               method_name: str) -> None:
    """
    Check that the observation returned by the environment
    correspond to the declared one.
    """
    if not isinstance(observation_space, spaces.Tuple):
        assert not isinstance(obs, tuple), ("The observation returned by the `{}()` "
                                            "method should be a single value, not a tuple".format(method_name))

    # The check for a GoalEnv is done by the base class
    if isinstance(observation_space, spaces.Discrete):
        assert isinstance(obs, int), "The observation returned by `{}()` method must be an int".format(method_name)
    elif _enforce_array_obs(observation_space):
        assert isinstance(obs, np.ndarray), ("The observation returned by `{}()` "
                                             "method must be a numpy array".format(method_name))

    assert observation_space.contains(obs), ("The observation returned by the `{}()` "
                                             "method does not match the given observation space".format(method_name)) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:22,代碼來源:env_checker.py

示例4: _detect_gym_spaces

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def _detect_gym_spaces(gym_space):
        if isinstance(gym_space, spaces.Discrete):
            return {"Discrete": (gym_space.n,)}
        elif isinstance(gym_space, spaces.MultiDiscrete):
            raise NotImplementedError
        elif isinstance(gym_space, spaces.MultiBinary):
            return {"MultiBinary": (gym_space.n,)}
        elif isinstance(gym_space, spaces.Box):
            return {"Box": gym_space.shape}
        elif isinstance(gym_space, spaces.Dict):
            return {
                name: list(Space._detect_gym_spaces(s).values())[0]
                for name, s in gym_space.spaces.items()
            }
        elif isinstance(gym_space, spaces.Tuple):
            return {
                idx: list(Space._detect_gym_spaces(s).values())[0]
                for idx, s in enumerate(gym_space.spaces)
            } 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:21,代碼來源:_spaces.py

示例5: dtypes_from_gym

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def dtypes_from_gym(gym_space):
        if isinstance(gym_space, spaces.Discrete):
            return {"Discrete": gym_space.dtype}
        elif isinstance(gym_space, spaces.MultiDiscrete):
            raise NotImplementedError
        elif isinstance(gym_space, spaces.MultiBinary):
            return {"MultiBinary": gym_space.dtype}
        elif isinstance(gym_space, spaces.Box):
            return {"Box": gym_space.dtype}
        elif isinstance(gym_space, spaces.Dict):
            return {
                name: list(Space._detect_gym_spaces(s).values())[0]
                for name, s in gym_space.spaces.items()
            }
        elif isinstance(gym_space, spaces.Tuple):
            return {
                idx: list(Space._detect_gym_spaces(s).values())[0]
                for idx, s in enumerate(gym_space.spaces)
            }
        else:
            raise NotImplementedError 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:23,代碼來源:_spaces.py

示例6: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self, max_steps, batch_size=1):
        self.max_steps = max_steps
        self.batch_size = batch_size
        self.payout_mat = np.array([[-2,0],[-3,-1]])
        self.states = np.array([[1,2],[3,4]])

        self.action_space = Tuple([
            Discrete(self.NUM_ACTIONS) for _ in range(self.NUM_AGENTS)
        ])
        self.observation_space = Tuple([
            OneHot(self.NUM_STATES) for _ in range(self.NUM_AGENTS)
        ])
        self.available_actions = [
            np.ones((batch_size, self.NUM_ACTIONS), dtype=int)
            for _ in range(self.NUM_AGENTS)
        ]

        self.step_count = None 
開發者ID:alexis-jacq,項目名稱:LOLA_DiCE,代碼行數:20,代碼來源:prisoners_dilemma.py

示例7: gym_space_distribution

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def gym_space_distribution(space):
    """
    Create a Distribution from a gym.Space.

    If the space is not supported, throws an
    UnsupportedActionSpace exception.
    """
    if isinstance(space, spaces.Discrete):
        return CategoricalSoftmax(space.n)
    elif isinstance(space, spaces.Box):
        return BoxGaussian(space.low, space.high)
    elif isinstance(space, spaces.MultiBinary):
        return MultiBernoulli(space.n)
    elif isinstance(space, spaces.Tuple):
        sub_dists = tuple(gym_space_distribution(s) for s in space.spaces)
        return TupleDistribution(sub_dists)
    elif isinstance(space, spaces.MultiDiscrete):
        discretes = tuple(CategoricalSoftmax(n) for n in space.nvec)
        return TupleDistribution(discretes, to_sample=lambda x: np.array(x, dtype=space.dtype))
    raise UnsupportedGymSpace(space) 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:22,代碼來源:gym.py

示例8: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self, env, first_action, num_eps=1, warmup_eps=0):
        """
        Parameters:
          env: the environment to wrap.
          first_action: the action to include in the first
            observation.
          num_eps: episodes per meta-episode.
          warmup_eps: the number of episodes at the start
            of a meta-episode for which rewards are 0.
            Negative values are added to num_eps.
        """
        if warmup_eps < 0:
            warmup_eps += num_eps
        super(RL2Env, self).__init__(env)
        self.first_action = first_action
        self.observation_space = spaces.Tuple([
            env.observation_space,
            env.action_space,
            spaces.Box(low=-np.inf, high=np.inf, shape=(1,), dtype='float'),
            spaces.MultiBinary(1)
        ])
        self.num_eps = num_eps
        self.warmup_eps = warmup_eps
        self._done_eps = 0 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:26,代碼來源:meta.py

示例9: step

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def step(self, actions):
        actions = np.array(actions)
        if not self.is_continuous:
            actions = sth.int2action_index(actions, self.discrete_action_dim_list)
            if self.action_type == 'discrete':
                actions = actions.reshape(-1,)
            elif self.action_type == 'Tuple(Discrete)':
                actions = actions.reshape(self.n, -1).tolist()
        results = Asyn.op_func(self.envs, Asyn.OP.STEP, actions)
        obs, reward, done, info = [np.asarray(e) for e in zip(*results)]
        reward = reward.astype('float32')
        dones_index = np.where(done)[0]
        if dones_index.shape[0] > 0:
            correct_new_obs = self.partial_reset(obs, dones_index)
        else:
            correct_new_obs = obs
        if self.obs_type == 'visual':
            obs = obs[:, np.newaxis, ...]
            correct_new_obs = correct_new_obs[:, np.newaxis, ...]
        return obs, reward, done, info, correct_new_obs 
開發者ID:StepNeverStop,項目名稱:RLs,代碼行數:22,代碼來源:gym_env.py

示例10: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self, env_config):
        self.map = [m for m in MAP_DATA.split("\n") if m]
        self.x_dim = len(self.map)
        self.y_dim = len(self.map[0])
        logger.info("Loaded map {} {}".format(self.x_dim, self.y_dim))
        for x in range(self.x_dim):
            for y in range(self.y_dim):
                if self.map[x][y] == "S":
                    self.start_pos = (x, y)
                elif self.map[x][y] == "F":
                    self.end_pos = (x, y)
        logger.info("Start pos {} end pos {}".format(self.start_pos,
                                                     self.end_pos))
        self.observation_space = Tuple([
            Box(0, 100, shape=(2, )),  # (x, y)
            Discrete(4),  # wind direction (N, E, S, W)
        ])
        self.action_space = Discrete(2)  # whether to move or not 
開發者ID:ray-project,項目名稱:ray,代碼行數:20,代碼來源:windy_maze_env.py

示例11: step

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def step(self, action):
        if self.check_action_bounds and not self.action_space.contains(action):
            raise ValueError("Illegal action for {}: {}".format(
                self.action_space, action))
        if (isinstance(self.action_space, Tuple)
                and len(action) != len(self.action_space.spaces)):
            raise ValueError("Illegal action for {}: {}".format(
                self.action_space, action))

        return self.observation_space.sample(), \
            float(self.reward_space.sample()), \
            bool(np.random.choice(
                [True, False], p=[self.p_done, 1.0 - self.p_done]
            )), {}


# Multi-agent version of the RandomEnv. 
開發者ID:ray-project,項目名稱:ray,代碼行數:19,代碼來源:random_env.py

示例12: _validate

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def _validate(obs_space, action_space):
    if not hasattr(obs_space, "original_space") or \
            not isinstance(obs_space.original_space, Tuple):
        raise ValueError("Obs space must be a Tuple, got {}. Use ".format(
            obs_space) + "MultiAgentEnv.with_agent_groups() to group related "
                         "agents for QMix.")
    if not isinstance(action_space, Tuple):
        raise ValueError(
            "Action space must be a Tuple, got {}. ".format(action_space) +
            "Use MultiAgentEnv.with_agent_groups() to group related "
            "agents for QMix.")
    if not isinstance(action_space.spaces[0], Discrete):
        raise ValueError(
            "QMix requires a discrete action space, got {}".format(
                action_space.spaces[0]))
    if len({str(x) for x in obs_space.original_space.spaces}) > 1:
        raise ValueError(
            "Implementation limitation: observations of grouped agents "
            "must be homogeneous, got {}".format(
                obs_space.original_space.spaces))
    if len({str(x) for x in action_space.spaces}) > 1:
        raise ValueError(
            "Implementation limitation: action space of grouped agents "
            "must be homogeneous, got {}".format(action_space.spaces)) 
開發者ID:ray-project,項目名稱:ray,代碼行數:26,代碼來源:qmix_policy.py

示例13: default

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def default(self, obj):
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        elif isinstance(obj, constants.Item):
            return obj.value
        elif isinstance(obj, constants.Action):
            return obj.value
        elif isinstance(obj, constants.GameType):
            return obj.value
        elif isinstance(obj, np.int64):
            return int(obj)
        elif hasattr(obj, 'to_json'):
            return obj.to_json()
        elif isinstance(obj, spaces.Discrete):
            return obj.n
        elif isinstance(obj, spaces.Tuple):
            return [space.n for space in obj.spaces]
        return json.JSONEncoder.default(self, obj) 
開發者ID:MultiAgentLearning,項目名稱:playground,代碼行數:20,代碼來源:utility.py

示例14: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self):
        self.height = 4
        self.width = 12
        self.action_space = spaces.Discrete(4)
        self.observation_space = spaces.Tuple((
                spaces.Discrete(self.height),
                spaces.Discrete(self.width)
                ))
        self.moves = {
                0: (-1, 0),   # up
                1: (0, 1),   # right
                2: (1, 0),  # down
                3: (0, -1),  # left
                }

        # begin in start state
        self.reset() 
開發者ID:podondra,項目名稱:gym-gridworlds,代碼行數:19,代碼來源:cliff_env.py

示例15: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Tuple [as 別名]
def __init__(self):
        self.height = 7
        self.width = 10
        self.action_space = spaces.Discrete(4)
        self.observation_space = spaces.Tuple((
                spaces.Discrete(self.height),
                spaces.Discrete(self.width)
                ))
        self.moves = {
                0: (-1, 0),  # up
                1: (0, 1),   # right
                2: (1, 0),   # down
                3: (0, -1),  # left
                }

        # begin in start state
        self.reset() 
開發者ID:podondra,項目名稱:gym-gridworlds,代碼行數:19,代碼來源:windy_gridworld_env.py


注:本文中的gym.spaces.Tuple方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。