當前位置: 首頁>>代碼示例>>Python>>正文


Python spaces.Dict方法代碼示例

本文整理匯總了Python中gym.spaces.Dict方法的典型用法代碼示例。如果您正苦於以下問題:Python spaces.Dict方法的具體用法?Python spaces.Dict怎麽用?Python spaces.Dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gym.spaces的用法示例。


在下文中一共展示了spaces.Dict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _check_unsupported_obs_spaces

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def _check_unsupported_obs_spaces(env: gym.Env, observation_space: spaces.Space) -> None:
    """Emit warnings when the observation space used is not supported by Stable-Baselines."""

    if isinstance(observation_space, spaces.Dict) and not isinstance(env, gym.GoalEnv):
        warnings.warn("The observation space is a Dict but the environment is not a gym.GoalEnv "
                      "(cf https://github.com/openai/gym/blob/master/gym/core.py), "
                      "this is currently not supported by Stable Baselines "
                      "(cf https://github.com/hill-a/stable-baselines/issues/133), "
                      "you will need to use a custom policy. "
                      )

    if isinstance(observation_space, spaces.Tuple):
        warnings.warn("The observation space is a Tuple,"
                      "this is currently not supported by Stable Baselines "
                      "(cf https://github.com/hill-a/stable-baselines/issues/133), "
                      "you will need to flatten the observation and maybe use a custom policy. "
                      ) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:19,代碼來源:env_checker.py

示例2: nested_discrete_gym_shape

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def nested_discrete_gym_shape(ac_space):
    """
    Given instance of gym.spaces.Dict holding base  gym.spaces.Discrete,
    returns nested dictionary of  spaces depths ( =dict of gym.spaces.Discrete.n)
    This util is here due to fact in practice we need .n attr of discrete space [as cat. encoding depth]
     rather than .shape, which is always ()

    Args:
        ac_space: instance of gym.spaces.Dict

    Returns:
        nested dictionary of lengths
    """
    if isinstance(ac_space, Dict):
        return {key: nested_discrete_gym_shape(space) for key, space in ac_space.spaces.items()}

    elif isinstance(ac_space, Discrete):
        return (ac_space.n,)

    else:
        raise TypeError('Expected gym.spaces.Dict or gym.spaces.Discrete, got: {}'.format(ac_space)) 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:23,代碼來源:utils.py

示例3: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env, keys_self, keys_external, keys_mask=[], flatten=True):
        super().__init__(env)
        self.keys_self = sorted([k + '_self' for k in keys_self])
        self.keys_external = sorted(keys_external)
        self.keys_mask = sorted(keys_mask)
        self.flatten = flatten

        # Change observation space to look like a single agent observation space.
        # This makes constructing policies much easier
        if flatten:
            size = sum([np.prod(self.env.observation_space.spaces[k].shape[1:])
                        for k in self.keys_self + self.keys_external])
            self.observation_space = Dict(
                {'observation_self': Box(-np.inf, np.inf, (size,), np.float32)})
        else:
            size_self = sum([self.env.observation_space.spaces[k].shape[1]
                             for k in self.keys_self])
            obs_self = {'observation_self': Box(-np.inf, np.inf, (size_self,), np.float32)}
            obs_extern = {k: Box(-np.inf, np.inf, v.shape[1:], np.float32)
                          for k, v in self.observation_space.spaces.items()
                          if k in self.keys_external + self.keys_mask}
            obs_self.update(obs_extern)
            self.observation_space = Dict(obs_self) 
開發者ID:openai,項目名稱:multi-agent-emergence-environments,代碼行數:25,代碼來源:multi_agent.py

示例4: _detect_gym_spaces

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def _detect_gym_spaces(gym_space):
        if isinstance(gym_space, spaces.Discrete):
            return {"Discrete": (gym_space.n,)}
        elif isinstance(gym_space, spaces.MultiDiscrete):
            raise NotImplementedError
        elif isinstance(gym_space, spaces.MultiBinary):
            return {"MultiBinary": (gym_space.n,)}
        elif isinstance(gym_space, spaces.Box):
            return {"Box": gym_space.shape}
        elif isinstance(gym_space, spaces.Dict):
            return {
                name: list(Space._detect_gym_spaces(s).values())[0]
                for name, s in gym_space.spaces.items()
            }
        elif isinstance(gym_space, spaces.Tuple):
            return {
                idx: list(Space._detect_gym_spaces(s).values())[0]
                for idx, s in enumerate(gym_space.spaces)
            } 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:21,代碼來源:_spaces.py

示例5: dtypes_from_gym

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def dtypes_from_gym(gym_space):
        if isinstance(gym_space, spaces.Discrete):
            return {"Discrete": gym_space.dtype}
        elif isinstance(gym_space, spaces.MultiDiscrete):
            raise NotImplementedError
        elif isinstance(gym_space, spaces.MultiBinary):
            return {"MultiBinary": gym_space.dtype}
        elif isinstance(gym_space, spaces.Box):
            return {"Box": gym_space.dtype}
        elif isinstance(gym_space, spaces.Dict):
            return {
                name: list(Space._detect_gym_spaces(s).values())[0]
                for name, s in gym_space.spaces.items()
            }
        elif isinstance(gym_space, spaces.Tuple):
            return {
                idx: list(Space._detect_gym_spaces(s).values())[0]
                for idx, s in enumerate(gym_space.spaces)
            }
        else:
            raise NotImplementedError 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:23,代碼來源:_spaces.py

示例6: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, **smac_args):
        """Create a new multi-agent StarCraft env compatible with RLlib.

        Arguments:
            smac_args (dict): Arguments to pass to the underlying
                smac.env.starcraft.StarCraft2Env instance.

        Examples:
            >>> from smac.examples.rllib import RLlibStarCraft2Env
            >>> env = RLlibStarCraft2Env(map_name="8m")
            >>> print(env.reset())
        """

        self._env = StarCraft2Env(**smac_args)
        self._ready_agents = []
        self.observation_space = Dict({
            "obs": Box(-1, 1, shape=(self._env.get_obs_size(),)),
            "action_mask": Box(0, 1, shape=(self._env.get_total_actions(),)),
        })
        self.action_space = Discrete(self._env.get_total_actions()) 
開發者ID:oxwhirl,項目名稱:smac,代碼行數:22,代碼來源:env.py

示例7: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env_fns):
        self.envs = [fn() for fn in env_fns]
        env = self.envs[0]
        self.level_pred = self.envs[0].level_pred
        VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
        shapes, dtypes = {}, {}
        self.keys = []
        obs_space = env.observation_space
        if isinstance(obs_space, spaces.Dict):
            assert isinstance(obs_space.spaces, OrderedDict)
            for key, box in obs_space.spaces.items():
                assert isinstance(box, spaces.Box)
                shapes[key] = box.shape
                dtypes[key] = box.dtype
                self.keys.append(key)
        else:
            box = obs_space
            assert isinstance(box, spaces.Box)
            self.keys = [None]
            shapes, dtypes = { None: box.shape }, { None: box.dtype }
        self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
        self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
        self.buf_rews  = np.zeros((self.num_envs,), dtype=np.float32)
        self.buf_infos = [{} for _ in range(self.num_envs)]
        self.actions = None 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:27,代碼來源:dummy_vec_env.py

示例8: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env, agent_view_size=7):
        super().__init__(env)

        assert agent_view_size % 2 == 1
        assert agent_view_size >= 3

        # Override default view size
        env.unwrapped.agent_view_size = agent_view_size

        # Compute observation space with specified view size
        observation_space = gym.spaces.Box(
            low=0,
            high=255,
            shape=(agent_view_size, agent_view_size, 3),
            dtype='uint8'
        )

        # Override the environment's observation space
        self.observation_space = spaces.Dict({
            'image': observation_space
        }) 
開發者ID:maximecb,項目名稱:gym-minigrid,代碼行數:23,代碼來源:wrappers.py

示例9: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self,
                 env: 'AbstractEnv',
                 features: Optional[List[str]] = None,
                 grid_size: Optional[List[List[float]]] = None,
                 grid_step: Optional[List[int]] = None,
                 features_range: Dict[str, List[float]] = None,
                 absolute: bool = False,
                 **kwargs: dict) -> None:
        """
        :param env: The environment to observe
        :param features: Names of features used in the observation
        :param vehicles_count: Number of observed vehicles
        """
        self.env = env
        self.features = features if features is not None else self.FEATURES
        self.grid_size = np.array(grid_size) if grid_size is not None else np.array(self.GRID_SIZE)
        self.grid_step = np.array(grid_step) if grid_step is not None else np.array(self.GRID_STEP)
        grid_shape = np.asarray(np.floor((self.grid_size[:, 1] - self.grid_size[:, 0]) / grid_step), dtype=np.int)
        self.grid = np.zeros((len(self.features), *grid_shape))
        self.features_range = features_range
        self.absolute = absolute 
開發者ID:eleurent,項目名稱:highway-env,代碼行數:23,代碼來源:observation.py

示例10: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, config):
        self.cur_pos = 0
        self.action_space = Discrete(4)

        # Represents an item.
        self.item_space = Discrete(5)

        # Represents an effect on the player.
        self.effect_space = Box(9000, 9999, shape=(4, ))

        # Represents a player.
        self.player_space = Dict({
            "location": Box(-100, 100, shape=(2, )),
            "status": Box(-1, 1, shape=(10, )),
            "items": Repeated(self.item_space, max_len=MAX_ITEMS),
            "effects": Repeated(self.effect_space, max_len=MAX_EFFECTS),
        })

        # Observation is a list of players.
        self.observation_space = Repeated(
            self.player_space, max_len=MAX_PLAYERS) 
開發者ID:ray-project,項目名稱:ray,代碼行數:23,代碼來源:simple_rpg.py

示例11: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env_config):
        self.state = None
        self.agent_1 = 0
        self.agent_2 = 1
        # MADDPG emits action logits instead of actual discrete actions
        self.actions_are_logits = env_config.get("actions_are_logits", False)
        self.one_hot_state_encoding = env_config.get("one_hot_state_encoding",
                                                     False)
        self.with_state = env_config.get("separate_state_space", False)

        if not self.one_hot_state_encoding:
            self.observation_space = Discrete(6)
            self.with_state = False
        else:
            # Each agent gets the full state (one-hot encoding of which of the
            # three states are active) as input with the receiving agent's
            # ID (1 or 2) concatenated onto the end.
            if self.with_state:
                self.observation_space = Dict({
                    "obs": MultiDiscrete([2, 2, 2, 3]),
                    ENV_STATE: MultiDiscrete([2, 2, 2])
                })
            else:
                self.observation_space = MultiDiscrete([2, 2, 2, 3]) 
開發者ID:ray-project,項目名稱:ray,代碼行數:26,代碼來源:two_step_game.py

示例12: _convert_spec_to_space

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def _convert_spec_to_space(spec):
    if isinstance(spec, dict):
        return spaces.Dict(
            {k: _convert_spec_to_space(v)
             for k, v in spec.items()})
    if isinstance(spec, specs.DiscreteArray):
        return spaces.Discrete(spec.num_values)
    elif isinstance(spec, specs.BoundedArray):
        return spaces.Box(
            low=np.asscalar(spec.minimum),
            high=np.asscalar(spec.maximum),
            shape=spec.shape,
            dtype=spec.dtype)
    elif isinstance(spec, specs.Array):
        return spaces.Box(
            low=-float("inf"),
            high=float("inf"),
            shape=spec.shape,
            dtype=spec.dtype)

    raise NotImplementedError(
        ("Could not convert `Array` spec of type {} to Gym space. "
         "Attempted to convert: {}").format(type(spec), spec)) 
開發者ID:ray-project,項目名稱:ray,代碼行數:25,代碼來源:dm_env_wrapper.py

示例13: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env_fns):
        self.envs = [fn() for fn in env_fns]
        env = self.envs[0]
        VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
        shapes, dtypes = {}, {}
        self.keys = []
        obs_space = env.observation_space

        if isinstance(obs_space, spaces.Dict):
            assert isinstance(obs_space.spaces, OrderedDict)
            subspaces = obs_space.spaces
        else:
            subspaces = {None: obs_space}

        for key, box in subspaces.items():
            shapes[key] = box.shape
            dtypes[key] = box.dtype
            self.keys.append(key)
        
        self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
        self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
        self.buf_rews  = np.zeros((self.num_envs,), dtype=np.float32)
        self.buf_infos = [{} for _ in range(self.num_envs)]
        self.actions = None 
開發者ID:junhyukoh,項目名稱:self-imitation-learning,代碼行數:26,代碼來源:dummy_vec_env.py

示例14: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, env, w, h, grayscale=True, add_channel_dim=False, area_interpolation=False):
        super(ResizeWrapper, self).__init__(env)

        self.w = w
        self.h = h
        self.grayscale = grayscale
        self.add_channel_dim = add_channel_dim
        self.interpolation = cv2.INTER_AREA if area_interpolation else cv2.INTER_NEAREST

        if isinstance(env.observation_space, spaces.Dict):
            # TODO: does this even work?
            new_spaces = {}
            for key, space in env.observation_space.spaces.items():
                new_spaces[key] = self._calc_new_obs_space(space)
            self.observation_space = spaces.Dict(new_spaces)
        else:
            self.observation_space = self._calc_new_obs_space(env.observation_space) 
開發者ID:alex-petrenko,項目名稱:sample-factory,代碼行數:19,代碼來源:env_wrappers.py

示例15: __init__

# 需要導入模塊: from gym import spaces [as 別名]
# 或者: from gym.spaces import Dict [as 別名]
def __init__(self, bit_length=16, max_steps=None):

        super(BitFlip, self).__init__()

        assert bit_length >= 1, 'bit_length must be >= 1, found {}'.format(bit_length)

        self.bit_length = bit_length

        if max_steps is None:
            self.max_steps = bit_length
        else:
            self.max_steps = max_steps

        self.last_action = -1  # -1 for reset
        self.steps = 0
        self.seed()
        self.action_space = spaces.Discrete(bit_length + 1)  # index = n means to not flip any bit
        # achieved goal and observation are identical in bit_flip environment, however it is made this way to be
        # compatible with Openai GoalEnv
        self.observation_space = spaces.Dict(dict(
            observation=spaces.Box(low=0, high=1, shape=(bit_length,), dtype=np.int32),
            achieved_goal=spaces.Box(low=0, high=1, shape=(bit_length,), dtype=np.int32),
            desired_goal=spaces.Box(low=0, high=1, shape=(bit_length,), dtype=np.int32),
        ))

        self.reset() 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:28,代碼來源:bit_flip.py


注:本文中的gym.spaces.Dict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。