本文整理匯總了Python中gym.logger.warn方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.warn方法的具體用法?Python logger.warn怎麽用?Python logger.warn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym.logger
的用法示例。
在下文中一共展示了logger.warn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def __init__(self, low=None, high=None, shape=None, dtype=None):
"""
Two kinds of valid input:
Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided
Box(low=np.array([-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape
"""
if shape is None:
assert low.shape == high.shape
shape = low.shape
else:
assert np.isscalar(low) and np.isscalar(high)
low = low + np.zeros(shape)
high = high + np.zeros(shape)
if dtype is None: # Autodetect type
if (high == 255).all():
dtype = np.uint8
else:
dtype = np.float32
logger.warn("gym.spaces.Box autodetected dtype as %s. Please provide explicit dtype." % dtype)
self.low = low.astype(dtype)
self.high = high.astype(dtype)
gym.Space.__init__(self, shape, dtype)
示例2: seed
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def seed(self, seed=None):
"""Sets the seed for this env's random number generator(s).
Note:
Some environments use multiple pseudorandom number generators.
We want to capture all such seeds used in order to ensure that
there aren't accidental correlations between multiple generators.
Returns:
list<bigint>: Returns the list of seeds used in this env's random
number generators. The first value in the list should be the
"main" seed, or the value which a reproducer should pass to
'seed'. Often, the main seed equals the provided 'seed', but
this won't be true if seed=None, for example.
"""
logger.warn("Could not seed environment %s", self)
return
示例3: patch_deprecated_methods
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def patch_deprecated_methods(env):
"""
Methods renamed from '_method' to 'method', render() no longer has 'close' parameter, close is a separate method.
For backward compatibility, this makes it possible to work with unmodified environments.
"""
global warn_once
if warn_once:
logger.warn("Environment '%s' has deprecated methods. Compatibility code invoked." % str(type(env)))
warn_once = False
env.reset = env._reset
env.step = env._step
env.seed = env._seed
def render(mode):
return env._render(mode, close=False)
def close():
env._render("human", close=True)
env.render = render
env.close = close
示例4: capture_frame
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def capture_frame(self):
"""Render the given `env` and add the resulting frame to the video."""
if not self.functional: return
logger.debug('Capturing video frame: path=%s', self.path)
render_mode = 'ansi' if self.ansi_mode else 'rgb_array'
frame = self.env.render(mode=render_mode)
if frame is None:
if self._async:
return
else:
# Indicates a bug in the environment: don't want to raise
# an error here.
logger.warn('Env returned None on render(). Disabling further rendering for video recorder by marking as disabled: path=%s metadata_path=%s', self.path, self.metadata_path)
self.broken = True
else:
self.last_frame = frame
if self.ansi_mode:
self._encode_ansi_frame(frame)
else:
self._encode_image_frame(frame)
示例5: patch_deprecated_methods
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def patch_deprecated_methods(env):
"""
Methods renamed from '_method' to 'method', render() no longer has 'close' parameter, close is a separate method.
For backward compatibility, this makes it possible to work with unmodified environments.
"""
global warn_once
if warn_once:
logger.warn("Environment '%s' has deprecated methods '_step' and '_reset' rather than 'step' and 'reset'. Compatibility code invoked. Set _gym_disable_underscore_compat = True to disable this behavior." % str(type(env)))
warn_once = False
env.reset = env._reset
env.step = env._step
env.seed = env._seed
def render(mode):
return env._render(mode, close=False)
def close():
env._render("human", close=True)
env.render = render
env.close = close
示例6: deprecated_warn_once
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def deprecated_warn_once(text):
global warn_once
if not warn_once: return
warn_once = False
logger.warn(text)
示例7: step
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def step(self, action):
assert self.action_space.contains(action)
self.last_action = action
inp_act, out_act, pred = action
done = False
reward = 0.0
self.time += 1
assert 0 <= self.write_head_position
if out_act == 1:
try:
correct = pred == self.target[self.write_head_position]
except IndexError:
logger.warn("It looks like you're calling step() even though this "+
"environment has already returned done=True. You should always call "+
"reset() once you receive done=True. Any further steps are undefined "+
"behaviour.")
correct = False
if correct:
reward = 1.0
else:
# Bail as soon as a wrong character is written to the tape
reward = -0.5
done = True
self.write_head_position += 1
if self.write_head_position >= len(self.target):
done = True
self._move(inp_act)
if self.time > self.time_limit:
reward = -1.0
done = True
obs = self._get_obs()
self.last_reward = reward
self.episode_total_reward += reward
return (obs, reward, done, {})
示例8: step
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def step(self, action):
assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
force = self.force_mag if action==1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
self.state = (x,x_dot,theta,theta_dot)
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
done = bool(done)
if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
if self.steps_beyond_done == 0:
logger.warn("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0.0
return np.array(self.state), reward, done, {}
示例9: test_env_semantics
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def test_env_semantics(spec):
logger.warn("Skipping this test. Existing hashes were generated in a bad way")
return
with open(ROLLOUT_FILE) as data_file:
rollout_dict = json.load(data_file)
if spec.id not in rollout_dict:
if not spec.nondeterministic:
logger.warn("Rollout does not exist for {}, run generate_json.py to generate rollouts for new envs".format(spec.id))
return
logger.info("Testing rollout for {} environment...".format(spec.id))
observations_now, actions_now, rewards_now, dones_now = generate_rollout_hash(spec)
errors = []
if rollout_dict[spec.id]['observations'] != observations_now:
errors.append('Observations not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['observations'], observations_now))
if rollout_dict[spec.id]['actions'] != actions_now:
errors.append('Actions not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['actions'], actions_now))
if rollout_dict[spec.id]['rewards'] != rewards_now:
errors.append('Rewards not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['rewards'], rewards_now))
if rollout_dict[spec.id]['dones'] != dones_now:
errors.append('Dones not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['dones'], dones_now))
if len(errors):
for error in errors:
logger.warn(error)
raise ValueError(errors)
示例10: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def __init__(self, id, entry_point=None, trials=100, reward_threshold=None, local_only=False, kwargs=None, nondeterministic=False, tags=None, max_episode_steps=None, max_episode_seconds=None, timestep_limit=None):
self.id = id
# Evaluation parameters
self.trials = trials
self.reward_threshold = reward_threshold
# Environment properties
self.nondeterministic = nondeterministic
if tags is None:
tags = {}
self.tags = tags
# BACKWARDS COMPAT 2017/1/18
if tags.get('wrapper_config.TimeLimit.max_episode_steps'):
max_episode_steps = tags.get('wrapper_config.TimeLimit.max_episode_steps')
# TODO: Add the following deprecation warning after 2017/02/18
# warnings.warn("DEPRECATION WARNING wrapper_config.TimeLimit has been deprecated. Replace any calls to `register(tags={'wrapper_config.TimeLimit.max_episode_steps': 200)}` with `register(max_episode_steps=200)`. This change was made 2017/1/31 and is included in gym version 0.8.0. If you are getting many of these warnings, you may need to update universe past version 0.21.3")
tags['wrapper_config.TimeLimit.max_episode_steps'] = max_episode_steps
######
# BACKWARDS COMPAT 2017/1/31
if timestep_limit is not None:
max_episode_steps = timestep_limit
# TODO: Add the following deprecation warning after 2017/03/01
# warnings.warn("register(timestep_limit={}) is deprecated. Use register(max_episode_steps={}) instead.".format(timestep_limit, timestep_limit))
######
self.max_episode_steps = max_episode_steps
self.max_episode_seconds = max_episode_seconds
# We may make some of these other parameters public if they're
# useful.
match = env_id_re.search(id)
if not match:
raise error.Error('Attempted to register malformed environment ID: {}. (Currently all IDs must be of the form {}.)'.format(id, env_id_re.pattern))
self._env_name = match.group(1)
self._entry_point = entry_point
self._local_only = local_only
self._kwargs = {} if kwargs is None else kwargs
示例11: _encode_image_frame
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def _encode_image_frame(self, frame):
if not self.encoder:
self.encoder = ImageEncoder(self.path, frame.shape, self.frames_per_sec)
self.metadata['encoder_version'] = self.encoder.version_info
try:
self.encoder.capture_frame(frame)
except error.InvalidFrame as e:
logger.warn('Tried to pass invalid video frame, marking as broken: %s', e)
self.broken = True
else:
self.empty = False
示例12: step
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def step(self, action):
assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
force = self.force_mag if action==1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == 'euler':
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = (x,x_dot,theta,theta_dot)
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
done = bool(done)
if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
if self.steps_beyond_done == 0:
logger.warn("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0.0
return np.array(self.state), reward, done, {}
示例13: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def __init__(self, positive_low=None, positive_high=None, negative_low=None, negative_high=None, shape=None,
dtype=None):
"""
for each coordinate
the value will be sampled from [positive_low, positive_hight] or [negative_low, negative_high]
"""
super(RingBox, self).__init__(low=negative_low, high=positive_high, shape=shape, dtype=dtype)
if shape is None:
assert positive_low.shape == positive_high.shape == negative_low.shape == negative_high.shape
shape = positive_low.shape
else:
assert np.isscalar(positive_low) and np.isscalar(
positive_high) and np.isscalar(negative_low) and np.isscalar(negative_high)
positive_low = positive_low + np.zeros(shape)
positive_high = positive_high + np.zeros(shape)
negative_low = negative_low + np.zeros(shape)
negative_high = negative_high + np.zeros(shape)
if dtype is None: # Autodetect type
if (positive_high == 255).all():
dtype = np.uint8
else:
dtype = np.float32
logger.warn(
"Ring Box autodetected dtype as {}. Please provide explicit dtype.".format(dtype))
self.positive_low = positive_low.astype(dtype)
self.positive_high = positive_high.astype(dtype)
self.negative_low = negative_low.astype(dtype)
self.negative_high = negative_high.astype(dtype)
self.length_positive = self.positive_high - self.positive_low
self.length_negative = self.negative_high - self.negative_low
self.np_random = np.random.RandomState()
示例14: act
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def act(self, action):
assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
force = self.force_mag if action == 1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
self.state = (x, x_dot, theta, theta_dot)
self.steps_elapsed += 1
done = self.is_over()
if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
if self.steps_beyond_done == 0:
logger.warn(
"You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0.0
self.observation = Observation(reward=reward,
state=np.array(self.state),
is_episode_over=self.is_over())
return self.observe()
示例15: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import warn [as 別名]
def __init__(self, low, high, shape=None, dtype=np.float32):
assert dtype is not None, 'dtype must be explicitly provided. '
self.dtype = np.dtype(dtype)
if shape is None:
assert low.shape == high.shape, 'box dimension mismatch. '
self.shape = low.shape
self.low = low
self.high = high
else:
assert np.isscalar(low) and np.isscalar(high), 'box requires scalar bounds. '
self.shape = tuple(shape)
self.low = np.full(self.shape, low)
self.high = np.full(self.shape, high)
def _get_precision(dtype):
if np.issubdtype(dtype, np.floating):
return np.finfo(dtype).precision
else:
return np.inf
low_precision = _get_precision(self.low.dtype)
high_precision = _get_precision(self.high.dtype)
dtype_precision = _get_precision(self.dtype)
if min(low_precision, high_precision) > dtype_precision:
logger.warn("Box bound precision lowered by casting to {}".format(self.dtype))
self.low = self.low.astype(self.dtype)
self.high = self.high.astype(self.dtype)
# Boolean arrays which indicate the interval type for each coordinate
self.bounded_below = -np.inf < self.low
self.bounded_above = np.inf > self.high
super(Box, self).__init__(self.shape, self.dtype)