本文整理匯總了Python中gym.logger.info方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.info方法的具體用法?Python logger.info怎麽用?Python logger.info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym.logger
的用法示例。
在下文中一共展示了logger.info方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def make(self, id):
logger.info('Making new env: %s', id)
spec = self.spec(id)
env = spec.make()
# We used to have people override _reset/_step rather than
# reset/step. Set _gym_disable_underscore_compat = True on
# your environment if you use these methods and don't want
# compatibility code to be invoked.
if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False):
patch_deprecated_methods(env)
if (env.spec.timestep_limit is not None) and not spec.tags.get('vnc'):
from gym.wrappers.time_limit import TimeLimit
env = TimeLimit(env,
max_episode_steps=env.spec.max_episode_steps,
max_episode_seconds=env.spec.max_episode_seconds)
return env
示例2: make
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def make(self, id):
logger.info('Making new env: %s', id)
spec = self.spec(id)
env = spec.make()
# We used to have people override _reset/_step rather than
# reset/step. Set _gym_disable_underscore_compat = True on
# your environment if you use these methods and don't want
# compatibility code to be invoked.
if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False):
patch_deprecated_methods(env)
if (env.spec.timestep_limit is not None) and not spec.tags.get('vnc'):
from .time_limit import TimeLimit
env = TimeLimit(env,
max_episode_steps=env.spec.max_episode_steps,
max_episode_seconds=env.spec.max_episode_seconds)
return env
示例3: make
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def make(self, id, kwargs):
logger.info('Making new env: %s', id)
spec = registration.spec(id)
env = spec.make()
# We used to have people override _reset/_step rather than
# reset/step. Set _gym_disable_underscore_compat = True on
# your environment if you use these methods and don't want
# compatibility code to be invoked.
if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False):
patch_deprecated_methods(env)
if (env.spec.timestep_limit is not None) and not spec.tags.get('vnc'):
from gym.wrappers.time_limit import TimeLimit
env = TimeLimit(env,
max_episode_steps=env.spec.max_episode_steps,
max_episode_seconds=env.spec.max_episode_seconds)
return env
示例4: make
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def make(self, path, **kwargs):
if len(kwargs) > 0:
logger.info('Making new env: %s (%s)', path, kwargs)
else:
logger.info('Making new env: %s', path)
spec = self.spec(path)
env = spec.make(**kwargs)
# We used to have people override _reset/_step rather than
# reset/step. Set _gym_disable_underscore_compat = True on
# your environment if you use these methods and don't want
# compatibility code to be invoked.
if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False):
patch_deprecated_methods(env)
if (env.spec.max_episode_steps is not None) and not spec.tags.get('vnc'):
from gym.wrappers.time_limit import TimeLimit
env = TimeLimit(env, max_episode_steps=env.spec.max_episode_steps)
return env
示例5: _preprocess
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def _preprocess(self):
data = pd.read_csv(Generator.dataset_path)
message = 'Columns found in the dataset {}'.format(data.columns)
logger.info(message)
data = data.dropna()
start_time_stamp = data['Timestamp'][0]
timestamps = data['Timestamp'].apply(lambda x: (x - start_time_stamp) / 60)
timestamps = timestamps - range(timestamps.shape[0])
data.insert(0, 'blocks', timestamps)
blocks = data.groupby('blocks')
message = 'Number of blocks of continuous prices found are {}'.format(len(blocks))
logger.info(message)
self._data_blocks = []
distinct_episodes = 0
for name, indices in blocks.indices.items():
'''
Length of the block should exceed the history length and horizon by 1.
Extra 1 is required to normalize each price block by previos time stamp
'''
if len(indices) > (self.history_length + self.horizon + 1):
self._data_blocks.append(blocks.get_group(name))
# similarly, we subtract an extra 1 to calculate the number of distinct episodes
distinct_episodes = distinct_episodes + (len(indices) - (self.history_length + self.horizon) + 1 + 1)
data = None
message_list = [
'Number of usable blocks obtained from the dataset are {}'.format(len(self._data_blocks))
]
message_list.append(
'Number of distinct episodes for the current configuration are {}'.format(distinct_episodes)
)
map(logger.info, message_list)
示例6: get_transactions
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def get_transactions():
if not Generator.dataset_path:
Generator.set_dataset_path()
message = 'Getting latest transactions from {}.'.format(URL) + \
'\nThis might take a few minutes depending upon your internet speed.'
logger.info(message)
path = os.path.join(Generator.temp_dir, 'coinbaseUSD.csv.gz')
f = urllib2.urlopen(URL)
with open(path, 'w') as buffer:
buffer.write(f.read())
message = 'Latest transactions saved to {}'.format(path)
logger.info(message)
# Read the transactions into pandas dataframe
with gzip.open(path, 'r') as f:
d = pd.read_table(f, sep=',', header=None, index_col=0, names=['price', 'volume'])
os.remove(path)
d.index = d.index.map(lambda ts: datetime.datetime.fromtimestamp(int(ts)))
d.index.names = ['DateTime_UTC']
p = pd.DataFrame(d['price'].resample('1Min').ohlc())
p.columns = ['price_open', 'price_high', 'price_low', 'price_close']
v = pd.DataFrame(d['volume'].resample('1Min').sum())
v.columns = ['volume']
p['volume'] = v['volume']
unix_timestamps = p.index.map(lambda ts: int(time.mktime(ts.timetuple())))
p.insert(0, 'Timestamp', unix_timestamps)
p.to_csv(Generator.dataset_path, sep=',')
message = 'Dataset sampled and saved to {}'.format(Generator.dataset_path)
logger.info(message)
示例7: load_gen
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def load_gen():
if not Generator.dataset_path:
Generator.set_dataset_path()
'''
TODO: Need to do sanity check of the sampled dataset
'''
if not os.path.isfile(Generator.dataset_path):
message = 'Sampled Dataset not found at {}.'.format(Generator.dataset_path) + \
'\nSetting up the environment for first use.'
logger.info(message)
Generator.get_transactions()
示例8: test_env_semantics
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def test_env_semantics(spec):
logger.warn("Skipping this test. Existing hashes were generated in a bad way")
return
with open(ROLLOUT_FILE) as data_file:
rollout_dict = json.load(data_file)
if spec.id not in rollout_dict:
if not spec.nondeterministic:
logger.warn("Rollout does not exist for {}, run generate_json.py to generate rollouts for new envs".format(spec.id))
return
logger.info("Testing rollout for {} environment...".format(spec.id))
observations_now, actions_now, rewards_now, dones_now = generate_rollout_hash(spec)
errors = []
if rollout_dict[spec.id]['observations'] != observations_now:
errors.append('Observations not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['observations'], observations_now))
if rollout_dict[spec.id]['actions'] != actions_now:
errors.append('Actions not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['actions'], actions_now))
if rollout_dict[spec.id]['rewards'] != rewards_now:
errors.append('Rewards not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['rewards'], rewards_now))
if rollout_dict[spec.id]['dones'] != dones_now:
errors.append('Dones not equal for {} -- expected {} but got {}'.format(spec.id, rollout_dict[spec.id]['dones'], dones_now))
if len(errors):
for error in errors:
logger.warn(error)
raise ValueError(errors)
示例9: make
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def make(self, id):
logger.info('Making new env: %s', id)
spec = self.spec(id)
env = spec.make()
if hasattr(env, "_reset") and hasattr(env, "_step"):
patch_deprecated_methods(env)
if (env.spec.timestep_limit is not None) and not spec.tags.get('vnc'):
from gym.wrappers.time_limit import TimeLimit
env = TimeLimit(env,
max_episode_steps=env.spec.max_episode_steps,
max_episode_seconds=env.spec.max_episode_seconds)
return env
示例10: step
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def step(self, action):
self._before_step(action)
observation, reward, done, info = self.env.step(action)
done = self._after_step(observation, reward, done, info)
return observation, reward, done, info
示例11: set_monitor_mode
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def set_monitor_mode(self, mode):
logger.info("Setting the monitor mode is deprecated and will be removed soon")
self._set_mode(mode)
示例12: _after_step
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def _after_step(self, observation, reward, done, info):
if not self.enabled: return done
if done and self.env_semantics_autoreset:
# For envs with BlockingReset wrapping VNCEnv, this observation will be the first one of the new episode
self.reset_video_recorder()
self.episode_id += 1
self._flush()
# Record stats
self.stats_recorder.after_step(observation, reward, done, info)
# Record video
self.video_recorder.capture_frame()
return done
示例13: clear_monitor_files
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def clear_monitor_files(training_dir):
files = detect_monitor_files(training_dir)
if len(files) == 0:
return
logger.info('Clearing %d monitor files from previous run (because force=True was provided)', len(files))
for file in files:
os.unlink(file)
示例14: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def close(self):
"""Make sure to manually close, or else you'll leak the encoder process"""
if not self.enabled:
return
if self.encoder:
logger.debug('Closing video encoder: path=%s', self.path)
self.encoder.close()
self.encoder = None
else:
# No frames captured. Set metadata, and remove the empty output file.
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['empty'] = True
# If broken, get rid of the output file, otherwise we'd leak it.
if self.broken:
logger.info('Cleaning up paths for broken video recorder: path=%s metadata_path=%s', self.path, self.metadata_path)
# Might have crashed before even starting the output file, don't try to remove in that case.
if os.path.exists(self.path):
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['broken'] = True
self.write_metadata()
示例15: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import info [as 別名]
def close(self):
"""Make sure to manually close, or else you'll leak the encoder process"""
if not self.enabled:
return
if self.encoder:
logger.debug('Closing video encoder: path=%s', self.path)
self.encoder.close()
self.encoder = None
else:
# No frames captured. Set metadata, and remove the empty output file.
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['empty'] = True
# If broken, get rid of the output file, otherwise we'd leak it.
if self.broken:
logger.info('Cleaning up paths for broken video recorder: path=%s metadata_path=%s', self.path, self.metadata_path)
# Might have crashed before even starting the output file, don't try to remove in that case.
if os.path.exists(self.path):
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['broken'] = True