本文整理匯總了Python中gym.logger.error方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.error方法的具體用法?Python logger.error怎麽用?Python logger.error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym.logger
的用法示例。
在下文中一共展示了logger.error方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: capture_frame
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def capture_frame(self):
"""Render the given `env` and add the resulting frame to the video."""
if not self.functional: return
logger.debug('Capturing video frame: path=%s', self.path)
render_mode = 'ansi' if self.ansi_mode else 'rgb_array'
frame = self.env.render(mode=render_mode)
if frame is None:
if self._async:
return
else:
# Indicates a bug in the environment: don't want to raise
# an error here.
logger.warn('Env returned None on render(). Disabling further rendering for video recorder by marking as disabled: path=%s metadata_path=%s', self.path, self.metadata_path)
self.broken = True
else:
self.last_frame = frame
if self.ansi_mode:
self._encode_ansi_frame(frame)
else:
self._encode_image_frame(frame)
示例2: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def __init__(self, output_path, frame_shape, frames_per_sec):
self.proc = None
self.output_path = output_path
# Frame shape should be lines-first, so w and h are swapped
h, w, pixfmt = frame_shape
if pixfmt != 3 and pixfmt != 4:
raise error.InvalidFrame("Your frame has shape {}, but we require (w,h,3) or (w,h,4), i.e. RGB values for a w-by-h image, with an optional alpha channl.".format(frame_shape))
self.wh = (w,h)
self.includes_alpha = (pixfmt == 4)
self.frame_shape = frame_shape
self.frames_per_sec = frames_per_sec
if distutils.spawn.find_executable('avconv') is not None:
self.backend = 'avconv'
elif distutils.spawn.find_executable('ffmpeg') is not None:
self.backend = 'ffmpeg'
else:
raise error.DependencyNotInstalled("""Found neither the ffmpeg nor avconv executables. On OS X, you can install ffmpeg via `brew install ffmpeg`. On most Ubuntu variants, `sudo apt-get install ffmpeg` should do it. On Ubuntu 14.04, however, you'll need to install avconv with `sudo apt-get install libav-tools`.""")
self.start()
示例3: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def __init__(self, final_path, frame_shape, frames_per_sec):
self.proc = None
self.final_path = final_path
_, self.output_path = tempfile.mkstemp(suffix='.mp4')
# Frame shape should be lines-first, so w and h are swapped
h, w, pixfmt = frame_shape
if pixfmt != 3 and pixfmt != 4:
raise error.InvalidFrame("Your frame has shape {}, but we require (w,h,3) or (w,h,4), i.e. RGB values for a w-by-h image, with an optional alpha channl.".format(frame_shape))
self.wh = (w,h)
self.includes_alpha = (pixfmt == 4)
self.frame_shape = frame_shape
self.frames_per_sec = frames_per_sec
if distutils.spawn.find_executable('avconv') is not None:
self.backend = 'avconv'
elif distutils.spawn.find_executable('ffmpeg') is not None:
self.backend = 'ffmpeg'
else:
raise error.DependencyNotInstalled("""Found neither the ffmpeg nor avconv executables. On OS X, you can install ffmpeg via `brew install ffmpeg`. On most Ubuntu variants, `sudo apt-get install ffmpeg` should do it. On Ubuntu 14.04, however, you'll need to install avconv with `sudo apt-get install libav-tools`.""")
self.start()
示例4: _raise_if_errors
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def _raise_if_errors(self, successes):
if all(successes):
return
num_errors = self.num_envs - sum(successes)
assert num_errors > 0
for _ in range(num_errors):
index, exctype, value = self.error_queue.get()
logger.error('Received the following error from Worker-{0}: '
'{1}: {2}'.format(index, exctype.__name__, value))
logger.error('Shutting down Worker-{0}.'.format(index))
self.parent_pipes[index].close()
self.parent_pipes[index] = None
logger.error('Raising the last exception back to the main process.')
raise exctype(value)
示例5: __init__
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def __init__(self, output_path, frame_shape, frames_per_sec):
self.proc = None
self.output_path = output_path
# Frame shape should be lines-first, so w and h are swapped
h, w, pixfmt = frame_shape
if pixfmt != 3 and pixfmt != 4:
raise error.InvalidFrame("Your frame has shape {}, but we require (w,h,3) or (w,h,4), i.e., RGB values for a w-by-h image, with an optional alpha channel.".format(frame_shape))
self.wh = (w,h)
self.includes_alpha = (pixfmt == 4)
self.frame_shape = frame_shape
self.frames_per_sec = frames_per_sec
if distutils.spawn.find_executable('avconv') is not None:
self.backend = 'avconv'
elif distutils.spawn.find_executable('ffmpeg') is not None:
self.backend = 'ffmpeg'
else:
raise error.DependencyNotInstalled("""Found neither the ffmpeg nor avconv executables. On OS X, you can install ffmpeg via `brew install ffmpeg`. On most Ubuntu variants, `sudo apt-get install ffmpeg` should do it. On Ubuntu 14.04, however, you'll need to install avconv with `sudo apt-get install libav-tools`.""")
self.start()
示例6: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def close(self):
super(Monitor, self)._close()
# _monitor will not be set if super(Monitor, self).__init__ raises, this check prevents a confusing error message
if getattr(self, '_monitor', None):
self.close()
示例7: _set_mode
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def _set_mode(self, mode):
if mode == 'evaluation':
type = 'e'
elif mode == 'training':
type = 't'
else:
raise error.Error('Invalid mode {}: must be "training" or "evaluation"', mode)
self.stats_recorder.type = type
示例8: load_results
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def load_results(training_dir):
if not os.path.exists(training_dir):
logger.error('Training directory %s not found', training_dir)
return
manifests = detect_training_manifests(training_dir)
if not manifests:
logger.error('No manifests found in training directory %s', training_dir)
return
logger.debug('Uploading data from manifest %s', ', '.join(manifests))
# Load up stats + video files
stats_files = []
videos = []
env_infos = []
for manifest in manifests:
with open(manifest) as f:
contents = json.load(f)
# Make these paths absolute again
stats_files.append(os.path.join(training_dir, contents['stats']))
videos += [(os.path.join(training_dir, v), os.path.join(training_dir, m))
for v, m in contents['videos']]
env_infos.append(contents['env_info'])
env_info = collapse_env_infos(env_infos, training_dir)
data_sources, initial_reset_timestamps, timestamps, episode_lengths, episode_rewards, episode_types, initial_reset_timestamp = merge_stats_files(stats_files)
return {
'manifests': manifests,
'env_info': env_info,
'data_sources': data_sources,
'timestamps': timestamps,
'episode_lengths': episode_lengths,
'episode_rewards': episode_rewards,
'episode_types': episode_types,
'initial_reset_timestamps': initial_reset_timestamps,
'initial_reset_timestamp': initial_reset_timestamp,
'videos': videos,
}
示例9: merge_stats_files
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def merge_stats_files(stats_files):
timestamps = []
episode_lengths = []
episode_rewards = []
episode_types = []
initial_reset_timestamps = []
data_sources = []
for i, path in enumerate(stats_files):
with open(path) as f:
content = json.load(f)
if len(content['timestamps'])==0: continue # so empty file doesn't mess up results, due to null initial_reset_timestamp
data_sources += [i] * len(content['timestamps'])
timestamps += content['timestamps']
episode_lengths += content['episode_lengths']
episode_rewards += content['episode_rewards']
# Recent addition
episode_types += content.get('episode_types', [])
# Keep track of where each episode came from.
initial_reset_timestamps.append(content['initial_reset_timestamp'])
idxs = np.argsort(timestamps)
timestamps = np.array(timestamps)[idxs].tolist()
episode_lengths = np.array(episode_lengths)[idxs].tolist()
episode_rewards = np.array(episode_rewards)[idxs].tolist()
data_sources = np.array(data_sources)[idxs].tolist()
if episode_types:
episode_types = np.array(episode_types)[idxs].tolist()
else:
episode_types = None
if len(initial_reset_timestamps) > 0:
initial_reset_timestamp = min(initial_reset_timestamps)
else:
initial_reset_timestamp = 0
return data_sources, initial_reset_timestamps, timestamps, episode_lengths, episode_rewards, episode_types, initial_reset_timestamp
# TODO training_dir isn't used except for error messages, clean up the layering
示例10: _encode_image_frame
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def _encode_image_frame(self, frame):
if not self.encoder:
self.encoder = ImageEncoder(self.path, frame.shape, self.frames_per_sec)
self.metadata['encoder_version'] = self.encoder.version_info
try:
self.encoder.capture_frame(frame)
except error.InvalidFrame as e:
logger.warn('Tried to pass invalid video frame, marking as broken: %s', e)
self.broken = True
else:
self.empty = False
示例11: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def close(self):
self.proc.stdin.close()
ret = self.proc.wait()
if ret != 0:
logger.error("VideoRecorder encoder exited with status {}".format(ret))
示例12: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import error [as 別名]
def close(self):
self.proc.stdin.close()
ret = self.proc.wait()
if ret != 0:
logger.error("VideoRecorder encoder exited with status {}".format(ret))
gfile.Copy(self.output_path, self.final_path, overwrite=True)
os.remove(self.output_path)