本文整理匯總了Python中gym.logger.debug方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.debug方法的具體用法?Python logger.debug怎麽用?Python logger.debug使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym.logger
的用法示例。
在下文中一共展示了logger.debug方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _flush
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def _flush(self, force=False):
"""Flush all relevant monitor information to disk."""
if not self.write_upon_reset and not force:
return
self.stats_recorder.flush()
# Give it a very distiguished name, since we need to pick it
# up from the filesystem later.
path = os.path.join(self.directory, '{}.manifest.{}.manifest.json'.format(self.file_prefix, self.file_infix))
logger.debug('Writing training manifest file to %s', path)
with atomic_write.atomic_write(path) as f:
# We need to write relative paths here since people may
# move the training_dir around. It would be cleaner to
# already have the basenames rather than basename'ing
# manually, but this works for now.
json.dump({
'stats': os.path.basename(self.stats_recorder.path),
'videos': [(os.path.basename(v), os.path.basename(m))
for v, m in self.videos],
'env_info': self._env_info(),
}, f, default=json_encode_np)
示例2: capture_frame
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def capture_frame(self):
"""Render the given `env` and add the resulting frame to the video."""
if not self.functional: return
logger.debug('Capturing video frame: path=%s', self.path)
render_mode = 'ansi' if self.ansi_mode else 'rgb_array'
frame = self.env.render(mode=render_mode)
if frame is None:
if self._async:
return
else:
# Indicates a bug in the environment: don't want to raise
# an error here.
logger.warn('Env returned None on render(). Disabling further rendering for video recorder by marking as disabled: path=%s metadata_path=%s', self.path, self.metadata_path)
self.broken = True
else:
self.last_frame = frame
if self.ansi_mode:
self._encode_ansi_frame(frame)
else:
self._encode_image_frame(frame)
示例3: start
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def start(self):
self.cmdline = (self.backend,
'-nostats',
'-loglevel', 'error', # suppress warnings
'-y',
'-r', '%d' % self.frames_per_sec,
# input
'-f', 'rawvideo',
'-s:v', '{}x{}'.format(*self.wh),
'-pix_fmt',('rgb32' if self.includes_alpha else 'rgb24'),
'-i', '-', # this used to be /dev/stdin, which is not Windows-friendly
# output
'-vcodec', 'libx264',
'-pix_fmt', 'yuv420p',
self.output_path
)
logger.debug('Starting ffmpeg with "%s"', ' '.join(self.cmdline))
if hasattr(os,'setsid'): #setsid not present on Windows
self.proc = subprocess.Popen(self.cmdline, stdin=subprocess.PIPE, preexec_fn=os.setsid)
else:
self.proc = subprocess.Popen(self.cmdline, stdin=subprocess.PIPE)
示例4: add_new_rollouts
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def add_new_rollouts(spec_ids, overwrite):
environments = [spec for spec in envs.registry.all() if spec._entry_point is not None]
if spec_ids:
environments = [spec for spec in environments if spec.id in spec_ids]
assert len(environments) == len(spec_ids), "Some specs not found"
with open(ROLLOUT_FILE) as data_file:
rollout_dict = json.load(data_file)
modified = False
for spec in environments:
if not overwrite and spec.id in rollout_dict:
logger.debug("Rollout already exists for {}. Skipping.".format(spec.id))
else:
modified = update_rollout_dict(spec, rollout_dict) or modified
if modified:
logger.info("Writing new rollout file to {}".format(ROLLOUT_FILE))
with open(ROLLOUT_FILE, "w") as outfile:
json.dump(rollout_dict, outfile, indent=2, sort_keys=True)
else:
logger.info("No modifications needed.")
示例5: start
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def start(self):
self.cmdline = (self.backend,
'-nostats',
'-loglevel', 'error', # suppress warnings
'-y',
'-r', '%d' % self.frames_per_sec,
# input
'-f', 'rawvideo',
'-s:v', '{}x{}'.format(*self.wh),
'-pix_fmt',('rgb32' if self.includes_alpha else 'rgb24'),
'-i', '-', # this used to be /dev/stdin, which is not Windows-friendly
# output
'-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2',
'-vcodec', 'libx264',
'-pix_fmt', 'yuv420p',
self.output_path
)
logger.debug('Starting ffmpeg with "%s"', ' '.join(self.cmdline))
if hasattr(os,'setsid'): #setsid not present on Windows
self.proc = subprocess.Popen(self.cmdline, stdin=subprocess.PIPE, preexec_fn=os.setsid)
else:
self.proc = subprocess.Popen(self.cmdline, stdin=subprocess.PIPE)
示例6: load_results
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def load_results(training_dir):
if not os.path.exists(training_dir):
logger.error('Training directory %s not found', training_dir)
return
manifests = detect_training_manifests(training_dir)
if not manifests:
logger.error('No manifests found in training directory %s', training_dir)
return
logger.debug('Uploading data from manifest %s', ', '.join(manifests))
# Load up stats + video files
stats_files = []
videos = []
env_infos = []
for manifest in manifests:
with open(manifest) as f:
contents = json.load(f)
# Make these paths absolute again
stats_files.append(os.path.join(training_dir, contents['stats']))
videos += [(os.path.join(training_dir, v), os.path.join(training_dir, m))
for v, m in contents['videos']]
env_infos.append(contents['env_info'])
env_info = collapse_env_infos(env_infos, training_dir)
data_sources, initial_reset_timestamps, timestamps, episode_lengths, episode_rewards, episode_types, initial_reset_timestamp = merge_stats_files(stats_files)
return {
'manifests': manifests,
'env_info': env_info,
'data_sources': data_sources,
'timestamps': timestamps,
'episode_lengths': episode_lengths,
'episode_rewards': episode_rewards,
'episode_types': episode_types,
'initial_reset_timestamps': initial_reset_timestamps,
'initial_reset_timestamp': initial_reset_timestamp,
'videos': videos,
}
示例7: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def close(self):
"""Make sure to manually close, or else you'll leak the encoder process"""
if not self.enabled:
return
if self.encoder:
logger.debug('Closing video encoder: path=%s', self.path)
self.encoder.close()
self.encoder = None
else:
# No frames captured. Set metadata, and remove the empty output file.
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['empty'] = True
# If broken, get rid of the output file, otherwise we'd leak it.
if self.broken:
logger.info('Cleaning up paths for broken video recorder: path=%s metadata_path=%s', self.path, self.metadata_path)
# Might have crashed before even starting the output file, don't try to remove in that case.
if os.path.exists(self.path):
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['broken'] = True
self.write_metadata()
示例8: close
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def close(self):
"""Make sure to manually close, or else you'll leak the encoder process"""
if not self.enabled:
return
if self.encoder:
logger.debug('Closing video encoder: path=%s', self.path)
self.encoder.close()
self.encoder = None
else:
# No frames captured. Set metadata, and remove the empty output file.
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['empty'] = True
# If broken, get rid of the output file, otherwise we'd leak it.
if self.broken:
logger.info('Cleaning up paths for broken video recorder: path=%s metadata_path=%s', self.path, self.metadata_path)
# Might have crashed before even starting the output file, don't try to remove in that case.
if os.path.exists(self.path):
os.remove(self.path)
if self.metadata is None:
self.metadata = {}
self.metadata['broken'] = True
示例9: log_input_images
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def log_input_images(obs_unpacked, mlog, num_stack, key_names=['map'], meter_name='debug/input_images', step_num=0):
# Plots the observations from the first process
stacked = []
for key_name in key_names:
if key_name not in obs_unpacked:
logger.debug(key_name, "not found")
continue
obs = obs_unpacked[key_name][0]
obs = (obs + 1.0) / 2.0
obs_chunked = list(torch.chunk(obs, num_stack, dim=0))
key_stacked = torchvision.utils.make_grid(obs_chunked, nrow=num_stack, padding=2)
stacked.append(key_stacked)
stacked = torch.cat(stacked, dim=1)
mlog.update_meter(stacked, meters={meter_name})
mlog.reset_meter(step_num, meterlist={meter_name})
示例10: update_rollout_dict
# 需要導入模塊: from gym import logger [as 別名]
# 或者: from gym.logger import debug [as 別名]
def update_rollout_dict(spec, rollout_dict):
"""
Takes as input the environment spec for which the rollout is to be generated,
and the existing dictionary of rollouts. Returns True iff the dictionary was
modified.
"""
# Skip platform-dependent
if should_skip_env_spec_for_tests(spec):
logger.info("Skipping tests for {}".format(spec.id))
return False
# Skip environments that are nondeterministic
if spec.nondeterministic:
logger.info("Skipping tests for nondeterministic env {}".format(spec.id))
return False
logger.info("Generating rollout for {}".format(spec.id))
try:
observations_hash, actions_hash, rewards_hash, dones_hash = generate_rollout_hash(spec)
except:
# If running the env generates an exception, don't write to the rollout file
logger.warn("Exception {} thrown while generating rollout for {}. Rollout not added.".format(sys.exc_info()[0], spec.id))
return False
rollout = {}
rollout['observations'] = observations_hash
rollout['actions'] = actions_hash
rollout['rewards'] = rewards_hash
rollout['dones'] = dones_hash
existing = rollout_dict.get(spec.id)
if existing:
differs = False
for key, new_hash in rollout.items():
differs = differs or existing[key] != new_hash
if not differs:
logger.debug("Hashes match with existing for {}".format(spec.id))
return False
else:
logger.warn("Got new hash for {}. Overwriting.".format(spec.id))
rollout_dict[spec.id] = rollout
return True