當前位置: 首頁>>代碼示例>>Python>>正文


Python discrete.DiscreteEnv方法代碼示例

本文整理匯總了Python中gym.envs.toy_text.discrete.DiscreteEnv方法的典型用法代碼示例。如果您正苦於以下問題:Python discrete.DiscreteEnv方法的具體用法?Python discrete.DiscreteEnv怎麽用?Python discrete.DiscreteEnv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gym.envs.toy_text.discrete的用法示例。


在下文中一共展示了discrete.DiscreteEnv方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: domain_to_index

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def domain_to_index(
            self, domain_batch: Union[State, StateAction, StateActionState]
    ) -> np.ndarray:
        """Convert a domain batch into  an numpy ndarray of reward table indices.

        Parameters
        ----------
        domain_batch: Union[State, StateAction, StateActionState]
            A domain batch. Can also be the entire domain.

        Returns
        -------
        np.ndarray
            A numpy array of corresponding reward table indices.
        """
        assert utils.wrapper.is_unwrappable_to(self.env, DiscreteEnv)
        index = copy(domain_batch.state)
        if self.action_in_domain:
            index *= self.env.action_space.n
            index += domain_batch.action
            if self.next_state_in_domain:
                index *= self.env.observation_space.n
                index += domain_batch.next_state
        return index 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:26,代碼來源:reward_function.py

示例2: test_is_unwrappable_to

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def test_is_unwrappable_to():
    assert is_unwrappable_to(make_env('FrozenLake-v0'), TimeLimit)
    assert is_unwrappable_to(make_env('FrozenLake-v0'), DiscreteEnv)
    assert is_unwrappable_to(
        feature_wrapper.make('FrozenLake-v0'), FrozenLakeFeatureWrapper)
    assert is_unwrappable_to(
        feature_wrapper.make('FrozenLake8x8-v0'), FrozenLakeFeatureWrapper)
    assert is_unwrappable_to(
        feature_wrapper.make('FrozenLake-v0'), feature_wrapper.FeatureWrapper)
    env = feature_wrapper.make('FrozenLake-v0')
    reward_function = FeatureBasedRewardFunction(env, 'random')
    env = RewardWrapper(env, reward_function)
    assert is_unwrappable_to(env, RewardWrapper)
    assert is_unwrappable_to(env, feature_wrapper.FeatureWrapper)
    assert is_unwrappable_to(env, DiscreteEnv)
    assert is_unwrappable_to(env, gym.Env) 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:18,代碼來源:utils_wrapper_test.py

示例3: __init__

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def __init__(self, env):
        assert is_unwrappable_to(env, DiscreteEnv)
        super(DiscreteEnvModelWrapper, self).__init__(env) 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:5,代碼來源:discrete_env.py

示例4: get_transition_array

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def get_transition_array(self):
        env = unwrap_env(self.env, DiscreteEnv)

        # adding +1 to account for absorbing state
        # (reached whenever game ended)
        n_states = env.observation_space.n + 1
        n_actions = env.action_space.n

        transitions = np.zeros([n_states, n_actions, n_states])

        # iterate over all "from" states:
        for state, transitions_given_state in env.P.items():
            # iterate over all actions:
            for action, outcomes in transitions_given_state.items():
                # iterate over all possible outcomes:
                for probability, next_state, _, done in outcomes:
                    # add transition probability T(s, a, s')
                    transitions[state, action, next_state] += probability
                    if done:
                        # outcome was marked as ending the game.
                        # if game is done and state == next_state, map to absorbing state instead
                        if state == next_state:
                            transitions[state, action, next_state] = 0
                        # map next state to absorbing state
                        # make sure that next state wasn't mapped to any other state yet
                        assert np.sum(transitions[next_state, :, :-1]) == 0
                        transitions[next_state, :, -1] = 1.0

        # specify transition probabilities for absorbing state:
        # returning to itself for all actions.
        transitions[-1, :, -1] = 1.0

        return transitions 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:35,代碼來源:discrete_env.py

示例5: get_reward_array

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def get_reward_array(self):
        env = unwrap_env(self.env, DiscreteEnv)

        # adding +1 to account for absorbing state
        # (reached whenever game ended)
        n_states = env.observation_space.n + 1
        n_actions = env.action_space.n

        if is_unwrappable_to(self.env, RewardWrapper):
            # get the reward function:
            reward_wrapper = unwrap_env(self.env, RewardWrapper)
            reward_function = reward_wrapper.reward_function
        else:
            reward_function = None

        rewards = np.zeros([n_states, n_actions])

        # iterate over all "from" states:
        for state, transitions_given_state in env.P.items():
            # iterate over all actions:
            for action, outcomes in transitions_given_state.items():
                # iterate over all possible outcomes:
                for probability, next_state, reward, done in outcomes:
                    if reward_function is not None:
                        if done and state == next_state:
                            # don't output reward for reaching state if game is over
                            # and already in that state.
                            reward = 0
                        else:
                            rew_input = reward_wrapper.get_reward_input_for(
                                state, action, next_state)
                            reward = reward_function.reward(rew_input)
                    rewards[state, action] += reward * probability

        # reward of absorbing state is zero:
        rewards[-1, :] = 0.0

        return rewards 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:40,代碼來源:discrete_env.py

示例6: domain

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def domain(self) -> Union[State, StateAction, StateActionState]:
        """Return the entire domain of the reward function.

        Returns
        -------
        Union[State, StateAction, StateActionState]
            The domain of the reward function.
        """
        if utils.wrapper.is_unwrappable_to(self.env, DiscreteEnv):
            n_states = self.env.observation_space.n
            n_actions = self.env.action_space.n
            states = np.arange(n_states)
        elif utils.wrapper.is_unwrappable_to(self.env, MazeWorld):
            maze_env = utils.wrapper.unwrap_env(self.env, MazeWorld)
            num_rewards = maze_env.num_rewards
            n_states = num_rewards * 2**num_rewards
            n_actions = num_rewards
            states = np.array(
                [maze_env.index_to_state(i) for i in range(n_states)])
        else:
            raise NotImplementedError()

        if self.action_in_domain:
            # if domain contains actions: extend domain
            states = np.repeat(states, n_actions, axis=0)
            actions = np.arange(n_actions)
            actions = np.tile(actions, n_states)
            if self.next_state_in_domain:
                # if domain contains next states: extend domain
                states = np.repeat(states, n_states)
                actions = np.repeat(actions, n_states)
                next_states = np.arange(n_states)
                next_states = np.tile(next_states, n_states * n_actions)
                # return the adequate namedtuple:
                return StateActionState(states, actions, next_states)
            return StateAction(states, actions)
        return State(states) 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:39,代碼來源:reward_function.py

示例7: envs_known_transitions

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def envs_known_transitions():
    """Return all environment ids for which transition dynamics are known."""
    result = []
    for env_id in ENV_IDS:
        if utils.wrapper.is_unwrappable_to(make_env(env_id), DiscreteEnv):
            result.append(env_id)
    return set(result) 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:9,代碼來源:__init__.py

示例8: make_wrapped_env

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def make_wrapped_env(env_id: str,
                     with_feature_wrapper: bool = False,
                     reward_function_factory: Callable = None,
                     with_model_wrapper: bool = False):
    """Make an environment, potentially wrapped in FeatureWrapper, RewardWrapper,
    and BaseWorldModelWrapper.

    Parameters
    ----------
    env_id: str
        The environment's id, e.g. 'FrozenLake-v0'.
    with_feature_wrapper: bool
        Whether to use a feature wrapper.
    reward_function_factory: Callable
        A function which returns a new reward function when called. If this is
        provided, the environment will be wrapped in a RewardWrapper using
        the returned reward function.
    with_model_wrapper: bool
        Whether to use a BaseWorldModelWrapper.

    Returns
    -------
    gym.Env
        A gym environment, potentially wrapped.
    """
    assert env_id in ENV_IDS
    if with_feature_wrapper:
        assert env_id in feature_wrapper.feature_wrappable_envs()
        env = feature_wrapper.make(env_id)
    else:
        env = make_env(env_id)

    if reward_function_factory is not None:
        reward_function = reward_function_factory(env)
        assert isinstance(reward_function, BaseRewardFunction)
        env = RewardWrapper(env, reward_function)

    if with_model_wrapper:
        if utils.wrapper.is_unwrappable_to(env, DiscreteEnv):
            env = DiscreteEnvModelWrapper(env)
        elif utils.wrapper.is_unwrappable_to(env, MazeWorld):
            env = MazeModelWrapper(env)
        else:
            raise NotImplementedError()
    return env 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:47,代碼來源:__init__.py

示例9: __init__

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def __init__(self):
        self.desc = np.asarray(MAP,dtype='c')

        self.locs = locs = [(0,0), (0,4), (4,0), (4,3)]

        nS = 500
        nR = 5
        nC = 5
        maxR = nR-1
        maxC = nC-1
        isd = np.zeros(nS)
        nA = 6
        P = {s : {a : [] for a in range(nA)} for s in range(nS)}
        for row in range(5):
            for col in range(5):
                for passidx in range(5):
                    for destidx in range(4):
                        state = self.encode(row, col, passidx, destidx)
                        if passidx < 4 and passidx != destidx:
                            isd[state] += 1
                        for a in range(nA):
                            # defaults
                            newrow, newcol, newpassidx = row, col, passidx
                            reward = -1
                            done = False
                            taxiloc = (row, col)

                            if a==0:
                                newrow = min(row+1, maxR)
                            elif a==1:
                                newrow = max(row-1, 0)
                            if a==2 and self.desc[1+row,2*col+2]==b":":
                                newcol = min(col+1, maxC)
                            elif a==3 and self.desc[1+row,2*col]==b":":
                                newcol = max(col-1, 0)
                            elif a==4: # pickup
                                if (passidx < 4 and taxiloc == locs[passidx]):
                                    newpassidx = 4
                                else:
                                    reward = -10
                            elif a==5: # dropoff
                                if (taxiloc == locs[destidx]) and passidx==4:
                                    done = True
                                    reward = 20
                                elif (taxiloc in locs) and passidx==4:
                                    newpassidx = locs.index(taxiloc)
                                else:
                                    reward = -10
                            newstate = self.encode(newrow, newcol, newpassidx, destidx)
                            P[state][a].append((1.0, newstate, reward, done))
        isd /= isd.sum()
        discrete.DiscreteEnv.__init__(self, nS, nA, P, isd) 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:54,代碼來源:taxi.py

示例10: __init__

# 需要導入模塊: from gym.envs.toy_text import discrete [as 別名]
# 或者: from gym.envs.toy_text.discrete import DiscreteEnv [as 別名]
def __init__(self):
        self.desc = np.asarray(MAP, dtype='c')

        self.locs = locs = [(0,0), (0,4), (4,0), (4,3)]

        num_states = 500
        num_rows = 5
        num_columns = 5
        max_row = num_rows - 1
        max_col = num_columns - 1
        initial_state_distrib = np.zeros(num_states)
        num_actions = 6
        P = {state: {action: []
                     for action in range(num_actions)} for state in range(num_states)}
        for row in range(num_rows):
            for col in range(num_columns):
                for pass_idx in range(len(locs) + 1):  # +1 for being inside taxi
                    for dest_idx in range(len(locs)):
                        state = self.encode(row, col, pass_idx, dest_idx)
                        if pass_idx < 4 and pass_idx != dest_idx:
                            initial_state_distrib[state] += 1
                        for action in range(num_actions):
                            # defaults
                            new_row, new_col, new_pass_idx = row, col, pass_idx
                            reward = -1 # default reward when there is no pickup/dropoff
                            done = False
                            taxi_loc = (row, col)

                            if action == 0:
                                new_row = min(row + 1, max_row)
                            elif action == 1:
                                new_row = max(row - 1, 0)
                            if action == 2 and self.desc[1 + row, 2 * col + 2] == b":":
                                new_col = min(col + 1, max_col)
                            elif action == 3 and self.desc[1 + row, 2 * col] == b":":
                                new_col = max(col - 1, 0)
                            elif action == 4:  # pickup
                                if (pass_idx < 4 and taxi_loc == locs[pass_idx]):
                                    new_pass_idx = 4
                                else: # passenger not at location
                                    reward = -10
                            elif action == 5:  # dropoff
                                if (taxi_loc == locs[dest_idx]) and pass_idx == 4:
                                    new_pass_idx = dest_idx
                                    done = True
                                    reward = 20
                                elif (taxi_loc in locs) and pass_idx == 4:
                                    new_pass_idx = locs.index(taxi_loc)
                                else: # dropoff at wrong location
                                    reward = -10
                            new_state = self.encode(
                                new_row, new_col, new_pass_idx, dest_idx)
                            P[state][action].append(
                                (1.0, new_state, reward, done))
        initial_state_distrib /= initial_state_distrib.sum()
        discrete.DiscreteEnv.__init__(
            self, num_states, num_actions, P, initial_state_distrib) 
開發者ID:hust512,項目名稱:DQN-DDPG_Stock_Trading,代碼行數:59,代碼來源:taxi.py


注:本文中的gym.envs.toy_text.discrete.DiscreteEnv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。