本文整理匯總了Python中gym.envs方法的典型用法代碼示例。如果您正苦於以下問題:Python gym.envs方法的具體用法?Python gym.envs怎麽用?Python gym.envs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym
的用法示例。
在下文中一共展示了gym.envs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_vec_envs
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def make_vec_envs(env_name, seed, num_processes, num_frame_stack=1, downsample=True, color=False, gamma=0.99, log_dir='./tmp/', device=torch.device('cpu')):
Path(log_dir).mkdir(parents=True, exist_ok=True)
envs = [make_env(env_name, seed, i, log_dir, downsample, color)
for i in range(num_processes)]
if len(envs) > 1:
envs = SubprocVecEnv(envs, context='fork')
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
if gamma is None:
envs = VecNormalize(envs, ret=False)
else:
envs = VecNormalize(envs, gamma=gamma)
envs = VecPyTorch(envs, device)
if num_frame_stack > 1:
envs = VecPyTorchFrameStack(envs, num_frame_stack, device)
return envs
示例2: should_skip_env_spec_for_tests
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def should_skip_env_spec_for_tests(spec):
# We skip tests for envs that require dependencies or are otherwise
# troublesome to run frequently
ep = spec._entry_point
# Skip mujoco tests for pull request CI
skip_mujoco = not (os.environ.get('MUJOCO_KEY_BUNDLE') or os.path.exists(os.path.expanduser('~/.mujoco')))
if skip_mujoco and ep.startswith('gym.envs.mujoco:'):
return True
if ( 'GoEnv' in ep or
'HexEnv' in ep or
ep.startswith('gym.envs.box2d:') or
ep.startswith('gym.envs.box2d:') or
(ep.startswith("gym.envs.atari") and not spec.id.startswith("Pong") and not spec.id.startswith("Seaquest"))
):
logger.warn("Skipping tests for env {}".format(ep))
return True
return False
示例3: add_new_rollouts
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def add_new_rollouts(spec_ids, overwrite):
environments = [spec for spec in envs.registry.all() if spec._entry_point is not None]
if spec_ids:
environments = [spec for spec in environments if spec.id in spec_ids]
assert len(environments) == len(spec_ids), "Some specs not found"
with open(ROLLOUT_FILE) as data_file:
rollout_dict = json.load(data_file)
modified = False
for spec in environments:
if not overwrite and spec.id in rollout_dict:
logger.debug("Rollout already exists for {}. Skipping.".format(spec.id))
else:
modified = update_rollout_dict(spec, rollout_dict) or modified
if modified:
logger.info("Writing new rollout file to {}".format(ROLLOUT_FILE))
with open(ROLLOUT_FILE, "w") as outfile:
json.dump(rollout_dict, outfile, indent=2, sort_keys=True)
else:
logger.info("No modifications needed.")
示例4: test_default_time_limit
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def test_default_time_limit():
# We need an env without a default limit
register(
id='test.NoLimitDummyVNCEnv-v0',
entry_point='universe.envs:DummyVNCEnv',
tags={
'vnc': True,
},
)
env = gym.make('test.NoLimitDummyVNCEnv-v0')
env.configure(_n=1)
env = wrappers.TimeLimit(env)
env.reset()
assert env._max_episode_seconds == wrappers.time_limit.DEFAULT_MAX_EPISODE_SECONDS
assert env._max_episode_steps == None
示例5: get_gym_stats
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def get_gym_stats():
"""Return a pandas DataFrame of the environment IDs."""
df = []
for e in gym.envs.registry.all():
print(e.id)
df.append(env_stats(gym.make(e.id)))
cols = [
"id",
"continuous_actions",
"continuous_observations",
"action_dim",
# "action_ids",
"deterministic",
"multidim_actions",
"multidim_observations",
"n_actions_per_dim",
"n_obs_per_dim",
"obs_dim",
# "obs_ids",
"seed",
"tuple_actions",
"tuple_observations",
]
return df if NO_PD else pd.DataFrame(df)[cols]
示例6: should_skip_env_spec_for_tests
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def should_skip_env_spec_for_tests(spec):
# We skip tests for envs that require dependencies or are otherwise
# troublesome to run frequently
ep = spec.entry_point
# Skip mujoco tests for pull request CI
if skip_mujoco and (ep.startswith('gym.envs.mujoco') or ep.startswith('gym.envs.robotics:')):
return True
try:
import atari_py
except ImportError:
if ep.startswith('gym.envs.atari'):
return True
try:
import Box2D
except ImportError:
if ep.startswith('gym.envs.box2d'):
return True
if ( 'GoEnv' in ep or
'HexEnv' in ep or
(ep.startswith("gym.envs.atari") and not spec.id.startswith("Pong") and not spec.id.startswith("Seaquest"))
):
logger.warn("Skipping tests for env {}".format(ep))
return True
return False
示例7: step_wait
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def step_wait(self):
obs = []
rews = []
dones = []
infos = []
for i in range(self.num_envs):
obs_tuple, reward, done, info = self.envs[i].step(self.actions[i])
if done:
obs_tuple = self.envs[i].reset()
obs.append(obs_tuple)
rews.append(reward)
dones.append(done)
infos.append(info)
return np.stack(obs), np.stack(rews), np.stack(dones), infos
示例8: register
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def register(id, **kwargs):
"""Idempotent version of gym.envs.registration.registry.
Needed since aprl.envs can get imported multiple times, e.g. when deserializing policies.
"""
try:
existing_spec = registration.spec(id)
new_spec = registration.EnvSpec(id, **kwargs)
assert existing_spec.__dict__ == new_spec.__dict__
except gym.error.UnregisteredEnv: # not previously registered
registration.register(id, **kwargs)
# Low-dimensional multi-agent environments
示例9: make_env
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def make_env(env_id, seed, rank, log_dir, downsample=True, color=False):
def _thunk():
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(
env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env = AtariARIWrapper(env)
env.seed(seed + rank)
if str(env.__class__.__name__).find('TimeLimit') >= 0:
env = TimeLimitMask(env)
if log_dir is not None:
env = bench.Monitor(
env,
os.path.join(log_dir, str(rank)),
allow_early_resets=False)
if is_atari:
if len(env.observation_space.shape) == 3:
env = wrap_deepmind(env, downsample=downsample, color=color)
elif len(env.observation_space.shape) == 3:
raise NotImplementedError(
"CNN models work only for atari,\n"
"please use a custom wrapper for a custom pixel input env.\n"
"See wrap_deepmind for an example.")
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = TransposeImage(env, op=[2, 0, 1])
return env
return _thunk
示例10: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def __init__(self, env_name, record_video=True, video_schedule=None, log_dir=None, record_log=True,
force_reset=False):
if log_dir is None:
if logger.get_snapshot_dir() is None:
logger.log("Warning: skipping Gym environment monitoring since snapshot_dir not configured.")
else:
log_dir = os.path.join(logger.get_snapshot_dir(), "gym_log")
Serializable.quick_init(self, locals())
env = gym.envs.make(env_name)
self.env = env
self.env_id = env.spec.id
assert not (not record_log and record_video)
if log_dir is None or record_log is False:
self.monitoring = False
else:
if not record_video:
video_schedule = NoVideoSchedule()
else:
if video_schedule is None:
video_schedule = CappedCubicVideoSchedule()
self.env = gym.wrappers.Monitor(self.env, log_dir, video_callable=video_schedule, force=True)
self.monitoring = True
self._observation_space = convert_gym_space(env.observation_space)
logger.log("observation space: {}".format(self._observation_space))
self._action_space = convert_gym_space(env.action_space)
logger.log("action space: {}".format(self._action_space))
self._horizon = env.spec.tags['wrapper_config.TimeLimit.max_episode_steps']
self._log_dir = log_dir
self._force_reset = force_reset
示例11: is_mujoco_env
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def is_mujoco_env(env):
from gym.envs import mujoco
if not hasattr(env, "env"):
return False
return gym.envs.mujoco.mujoco_env.MujocoEnv in env.env.__class__.__bases__
示例12: is_atari_env
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def is_atari_env(env):
from gym.envs import atari
if not hasattr(env, "env"):
return False
return gym.envs.atari.atari_env.AtariEnv == env.env.__class__
示例13: make_env
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def make_env(env_id, seed, rank, episode_life=True):
def _thunk():
random_seed(seed)
if env_id.startswith("dm"):
import dm_control2gym
_, domain, task = env_id.split('-')
env = dm_control2gym.make(domain_name=domain, task_name=task)
else:
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(
env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env.seed(seed + rank)
env = OriginalReturnWrapper(env)
if is_atari:
env = wrap_deepmind(env,
episode_life=episode_life,
clip_rewards=False,
frame_stack=False,
scale=False)
obs_shape = env.observation_space.shape
if len(obs_shape) == 3:
env = TransposeImage(env)
env = FrameStack(env, 4)
return env
return _thunk
示例14: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def __init__(self, env_fns):
self.envs = [fn() for fn in env_fns]
env = self.envs[0]
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
self.actions = None
示例15: step_wait
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import envs [as 別名]
def step_wait(self):
data = []
for i in range(self.num_envs):
obs, rew, done, info = self.envs[i].step(self.actions[i])
if done:
obs = self.envs[i].reset()
data.append([obs, rew, done, info])
obs, rew, done, info = zip(*data)
return obs, np.asarray(rew), np.asarray(done), info