本文整理匯總了Python中graph_tool.GraphView方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_tool.GraphView方法的具體用法?Python graph_tool.GraphView怎麽用?Python graph_tool.GraphView使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類graph_tool
的用法示例。
在下文中一共展示了graph_tool.GraphView方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_hardness_distribution
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_hardness_distribution(gtG, max_dist, min_dist, rng, trials, bins, nodes,
n_ori, step_size):
heuristic_fn = lambda node_ids, node_id: \
heuristic_fn_vec(nodes[node_ids, :], nodes[[node_id], :], n_ori, step_size)
num_nodes = gtG.num_vertices()
gt_dists = []; h_dists = [];
for i in range(trials):
end_node_id = rng.choice(num_nodes)
gt_dist = gt.topology.shortest_distance(gt.GraphView(gtG, reversed=True),
source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
gt_dist = gt_dist[ind]
h_dist = heuristic_fn(ind, end_node_id)[:,0]
gt_dists.append(gt_dist)
h_dists.append(h_dist)
gt_dists = np.concatenate(gt_dists)
h_dists = np.concatenate(h_dists)
hardness = 1. - h_dists*1./gt_dists
hist, _ = np.histogram(hardness, bins)
hist = hist.astype(np.float64)
hist = hist / np.sum(hist)
return hist
示例2: get_distance_node_list
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
gtG_ = gt.Graph(gtG)
v = gtG_.add_vertex()
if weights is not None:
weights = gtG_.edge_properties[weights]
for s in source_nodes:
e = gtG_.add_edge(s, int(v))
if weights is not None:
weights[e] = 0.
if direction == 'to':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
target=None, weights=weights)
elif direction == 'from':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
target=None, weights=weights)
dist = np.array(dist.get_array())
dist = dist[:-1]
if weights is None:
dist = dist-1
return dist
# Functions for semantically labelling nodes in the traversal graph.
示例3: get_distance_node_list
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
gtG_ = gt.Graph(gtG)
v = gtG_.add_vertex()
if weights is not None:
weights = gtG_.edge_properties[weights]
for s in source_nodes:
e = gtG_.add_edge(s, int(v))
if weights is not None:
weights[e] = 0.
if direction == 'to':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
target=None, weights=weights)
elif direction == 'from':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
target=None, weights=weights)
dist = np.array(dist.get_array())
dist = dist[:-1]
if weights is None:
dist = dist-1
return dist
# Functions for semantically labelling nodes in the traversal graph.
示例4: rng_next_goal_rejection_sampling
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal_rejection_sampling(start_node_ids, batch_size, gtG, rng,
max_dist, min_dist, max_dist_to_compute,
sampling_d, target_d,
nodes, n_ori, step_size, bins, M):
sample_start_nodes = start_node_ids is None
dists = []; pred_maps = []; end_node_ids = []; start_node_ids_ = [];
hardnesss = []; gt_dists = [];
num_nodes = gtG.num_vertices()
for i in range(batch_size):
done = False
while not done:
if sample_start_nodes:
start_node_id = rng.choice(num_nodes)
else:
start_node_id = start_node_ids[i]
gt_dist = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=start_node_id, target=None,
max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
ind = rng.permutation(ind)
gt_dist = gt_dist[ind]*1.
h_dist = heuristic_fn_vec(nodes[ind, :], nodes[[start_node_id], :],
n_ori, step_size)[:,0]
hardness = 1. - h_dist / gt_dist
sampled_ind = _rejection_sampling(rng, sampling_d, target_d, bins,
hardness, M)
if sampled_ind < ind.size:
# print sampled_ind
end_node_id = ind[sampled_ind]
hardness = hardness[sampled_ind]
gt_dist = gt_dist[sampled_ind]
done = True
# Compute distance from end node to all nodes, to return.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=end_node_id, target=None,
max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
hardnesss.append(hardness); dists.append(dist); pred_maps.append(pred_map);
start_node_ids_.append(start_node_id); end_node_ids.append(end_node_id);
gt_dists.append(gt_dist);
paths = None
return start_node_ids_, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists
示例5: rng_next_goal
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
max_dist_to_compute, node_room_ids, nodes=None,
compute_path=False, dists_from_start_node=None):
# Compute the distance field from the starting location, and then pick a
# destination in another room if possible otherwise anywhere outside this
# room.
dists = []; pred_maps = []; paths = []; end_node_ids = [];
for i in range(batch_size):
room_id = node_room_ids[start_node_ids[i]]
# Compute distances.
if dists_from_start_node == None:
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
else:
dist = dists_from_start_node[i]
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
end_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
end_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
end_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
# Compute distance to this new goal for doing distance queries.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
end_node_ids.append(end_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
示例6: rng_room_to_room
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_room_to_room(batch_size, gtG, rng, max_dist, max_dist_to_compute,
node_room_ids, nodes=None, compute_path=False):
# Sample one of the rooms, compute the distance field. Pick a destination in
# another room if possible otherwise anywhere outside this room.
dists = []; pred_maps = []; paths = []; start_node_ids = []; end_node_ids = [];
room_ids = np.unique(node_room_ids[node_room_ids[:,0] >= 0, 0])
for i in range(batch_size):
room_id = rng.choice(room_ids)
end_node_id = rng.choice(np.where(node_room_ids[:,0] == room_id)[0])
end_node_ids.append(end_node_id)
# Compute distances.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
start_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
start_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
start_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
start_node_ids.append(start_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
示例7: rng_next_goal
# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
max_dist_to_compute, node_room_ids, nodes=None,
compute_path=False, dists_from_start_node=None):
# Compute the distance field from the starting location, and then pick a
# destination in another room if possible otherwise anywhere outside this
# room.
dists = []; pred_maps = []; paths = []; end_node_ids = [];
for i in range(batch_size):
room_id = node_room_ids[start_node_ids[i]]
# Compute distances.
if dists_from_start_node == None:
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
else:
dist = dists_from_start_node[i]
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
end_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
end_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
end_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
# Compute distance to this new goal for doing distance queries.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
end_node_ids.append(end_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths