當前位置: 首頁>>代碼示例>>Python>>正文


Python graph_tool.GraphView方法代碼示例

本文整理匯總了Python中graph_tool.GraphView方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_tool.GraphView方法的具體用法?Python graph_tool.GraphView怎麽用?Python graph_tool.GraphView使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在graph_tool的用法示例。


在下文中一共展示了graph_tool.GraphView方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_hardness_distribution

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_hardness_distribution(gtG, max_dist, min_dist, rng, trials, bins, nodes,
                              n_ori, step_size):
  heuristic_fn = lambda node_ids, node_id: \
    heuristic_fn_vec(nodes[node_ids, :], nodes[[node_id], :], n_ori, step_size)
  num_nodes = gtG.num_vertices()
  gt_dists = []; h_dists = [];
  for i in range(trials):
    end_node_id = rng.choice(num_nodes)
    gt_dist = gt.topology.shortest_distance(gt.GraphView(gtG, reversed=True),
                                            source=gtG.vertex(end_node_id),
                                            target=None, max_dist=max_dist)
    gt_dist = np.array(gt_dist.get_array())
    ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
    gt_dist = gt_dist[ind]
    h_dist = heuristic_fn(ind, end_node_id)[:,0]
    gt_dists.append(gt_dist)
    h_dists.append(h_dist)
  gt_dists = np.concatenate(gt_dists)
  h_dists = np.concatenate(h_dists)
  hardness = 1. - h_dists*1./gt_dists
  hist, _ = np.histogram(hardness, bins)
  hist = hist.astype(np.float64)
  hist = hist / np.sum(hist)
  return hist 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:graph_utils.py

示例2: get_distance_node_list

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
  gtG_ = gt.Graph(gtG)
  v = gtG_.add_vertex()
  
  if weights is not None:
    weights = gtG_.edge_properties[weights]
  
  for s in source_nodes:
    e = gtG_.add_edge(s, int(v))
    if weights is not None:
      weights[e] = 0.

  if direction == 'to':
    dist = gt.topology.shortest_distance(
        gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
        target=None, weights=weights)
  elif direction == 'from':
    dist = gt.topology.shortest_distance(
        gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
        target=None, weights=weights)
  dist = np.array(dist.get_array())
  dist = dist[:-1]
  if weights is None:
    dist = dist-1
  return dist

# Functions for semantically labelling nodes in the traversal graph. 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:graph_utils.py

示例3: get_distance_node_list

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
  gtG_ = gt.Graph(gtG)
  v = gtG_.add_vertex()

  if weights is not None:
    weights = gtG_.edge_properties[weights]

  for s in source_nodes:
    e = gtG_.add_edge(s, int(v))
    if weights is not None:
      weights[e] = 0.

  if direction == 'to':
    dist = gt.topology.shortest_distance(
        gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
        target=None, weights=weights)
  elif direction == 'from':
    dist = gt.topology.shortest_distance(
        gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
        target=None, weights=weights)
  dist = np.array(dist.get_array())
  dist = dist[:-1]
  if weights is None:
    dist = dist-1
  return dist

# Functions for semantically labelling nodes in the traversal graph. 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:29,代碼來源:graph_utils.py

示例4: rng_next_goal_rejection_sampling

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal_rejection_sampling(start_node_ids, batch_size, gtG, rng,
                                     max_dist, min_dist, max_dist_to_compute,
                                     sampling_d, target_d,
                                     nodes, n_ori, step_size, bins, M):
  sample_start_nodes = start_node_ids is None
  dists = []; pred_maps = []; end_node_ids = []; start_node_ids_ = [];
  hardnesss = []; gt_dists = [];
  num_nodes = gtG.num_vertices()
  for i in range(batch_size):
    done = False
    while not done:
      if sample_start_nodes:
        start_node_id = rng.choice(num_nodes)
      else:
        start_node_id = start_node_ids[i]

      gt_dist = gt.topology.shortest_distance(
          gt.GraphView(gtG, reversed=False), source=start_node_id, target=None,
          max_dist=max_dist)
      gt_dist = np.array(gt_dist.get_array())
      ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
      ind = rng.permutation(ind)
      gt_dist = gt_dist[ind]*1.
      h_dist = heuristic_fn_vec(nodes[ind, :], nodes[[start_node_id], :],
                                n_ori, step_size)[:,0]
      hardness = 1. - h_dist / gt_dist
      sampled_ind = _rejection_sampling(rng, sampling_d, target_d, bins,
                                        hardness, M)
      if sampled_ind < ind.size:
        # print sampled_ind
        end_node_id = ind[sampled_ind]
        hardness = hardness[sampled_ind]
        gt_dist = gt_dist[sampled_ind]
        done = True

    # Compute distance from end node to all nodes, to return.
    dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=True), source=end_node_id, target=None,
        max_dist=max_dist_to_compute, pred_map=True)
    dist = np.array(dist.get_array())
    pred_map = np.array(pred_map.get_array())

    hardnesss.append(hardness); dists.append(dist); pred_maps.append(pred_map);
    start_node_ids_.append(start_node_id); end_node_ids.append(end_node_id);
    gt_dists.append(gt_dist);
    paths = None
  return start_node_ids_, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:49,代碼來源:graph_utils.py

示例5: rng_next_goal

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
                  max_dist_to_compute, node_room_ids, nodes=None,
                  compute_path=False, dists_from_start_node=None):
  # Compute the distance field from the starting location, and then pick a
  # destination in another room if possible otherwise anywhere outside this
  # room.
  dists = []; pred_maps = []; paths = []; end_node_ids = [];
  for i in range(batch_size):
    room_id = node_room_ids[start_node_ids[i]]
    # Compute distances.
    if dists_from_start_node == None:
      dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
        target=None, max_dist=max_dist_to_compute, pred_map=True)
      dist = np.array(dist.get_array())
    else:
      dist = dists_from_start_node[i]

    # Randomly sample nodes which are within max_dist.
    near_ids = dist <= max_dist
    near_ids = near_ids[:, np.newaxis]
    # Check to see if there is a non-negative node which is close enough.
    non_same_room_ids = node_room_ids != room_id
    non_hallway_ids = node_room_ids != -1
    good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
    good2_ids = np.logical_and(near_ids, non_hallway_ids)
    good3_ids = near_ids
    if np.any(good1_ids):
      end_node_id = rng.choice(np.where(good1_ids)[0])
    elif np.any(good2_ids):
      end_node_id = rng.choice(np.where(good2_ids)[0])
    elif np.any(good3_ids):
      end_node_id = rng.choice(np.where(good3_ids)[0])
    else:
      logging.error('Did not find any good nodes.')

    # Compute distance to this new goal for doing distance queries.
    dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
        target=None, max_dist=max_dist_to_compute, pred_map=True)
    dist = np.array(dist.get_array())
    pred_map = np.array(pred_map.get_array())

    dists.append(dist)
    pred_maps.append(pred_map)
    end_node_ids.append(end_node_id)

    path = None
    if compute_path:
      path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
    paths.append(path)
  
  return start_node_ids, end_node_ids, dists, pred_maps, paths 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:55,代碼來源:graph_utils.py

示例6: rng_room_to_room

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_room_to_room(batch_size, gtG, rng, max_dist, max_dist_to_compute,
                     node_room_ids, nodes=None, compute_path=False):
  # Sample one of the rooms, compute the distance field. Pick a destination in
  # another room if possible otherwise anywhere outside this room.
  dists = []; pred_maps = []; paths = []; start_node_ids = []; end_node_ids = [];
  room_ids = np.unique(node_room_ids[node_room_ids[:,0] >= 0, 0])
  for i in range(batch_size):
    room_id = rng.choice(room_ids)
    end_node_id = rng.choice(np.where(node_room_ids[:,0] == room_id)[0])
    end_node_ids.append(end_node_id)

    # Compute distances.
    dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
        target=None, max_dist=max_dist_to_compute, pred_map=True)
    dist = np.array(dist.get_array())
    pred_map = np.array(pred_map.get_array())
    dists.append(dist)
    pred_maps.append(pred_map)

    # Randomly sample nodes which are within max_dist.
    near_ids = dist <= max_dist
    near_ids = near_ids[:, np.newaxis]

    # Check to see if there is a non-negative node which is close enough.
    non_same_room_ids = node_room_ids != room_id
    non_hallway_ids = node_room_ids != -1
    good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
    good2_ids = np.logical_and(near_ids, non_hallway_ids)
    good3_ids = near_ids
    if np.any(good1_ids):
      start_node_id = rng.choice(np.where(good1_ids)[0])
    elif np.any(good2_ids):
      start_node_id = rng.choice(np.where(good2_ids)[0])
    elif np.any(good3_ids):
      start_node_id = rng.choice(np.where(good3_ids)[0])
    else:
      logging.error('Did not find any good nodes.')

    start_node_ids.append(start_node_id)

    path = None
    if compute_path:
      path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
    paths.append(path)

  return start_node_ids, end_node_ids, dists, pred_maps, paths 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:49,代碼來源:graph_utils.py

示例7: rng_next_goal

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import GraphView [as 別名]
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
                  max_dist_to_compute, node_room_ids, nodes=None,
                  compute_path=False, dists_from_start_node=None):
  # Compute the distance field from the starting location, and then pick a
  # destination in another room if possible otherwise anywhere outside this
  # room.
  dists = []; pred_maps = []; paths = []; end_node_ids = [];
  for i in range(batch_size):
    room_id = node_room_ids[start_node_ids[i]]
    # Compute distances.
    if dists_from_start_node == None:
      dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
        target=None, max_dist=max_dist_to_compute, pred_map=True)
      dist = np.array(dist.get_array())
    else:
      dist = dists_from_start_node[i]

    # Randomly sample nodes which are within max_dist.
    near_ids = dist <= max_dist
    near_ids = near_ids[:, np.newaxis]
    # Check to see if there is a non-negative node which is close enough.
    non_same_room_ids = node_room_ids != room_id
    non_hallway_ids = node_room_ids != -1
    good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
    good2_ids = np.logical_and(near_ids, non_hallway_ids)
    good3_ids = near_ids
    if np.any(good1_ids):
      end_node_id = rng.choice(np.where(good1_ids)[0])
    elif np.any(good2_ids):
      end_node_id = rng.choice(np.where(good2_ids)[0])
    elif np.any(good3_ids):
      end_node_id = rng.choice(np.where(good3_ids)[0])
    else:
      logging.error('Did not find any good nodes.')

    # Compute distance to this new goal for doing distance queries.
    dist, pred_map = gt.topology.shortest_distance(
        gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
        target=None, max_dist=max_dist_to_compute, pred_map=True)
    dist = np.array(dist.get_array())
    pred_map = np.array(pred_map.get_array())

    dists.append(dist)
    pred_maps.append(pred_map)
    end_node_ids.append(end_node_id)

    path = None
    if compute_path:
      path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
    paths.append(path)

  return start_node_ids, end_node_ids, dists, pred_maps, paths 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:55,代碼來源:graph_utils.py


注:本文中的graph_tool.GraphView方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。