當前位置: 首頁>>代碼示例>>Python>>正文


Python graph_tool.Graph方法代碼示例

本文整理匯總了Python中graph_tool.Graph方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_tool.Graph方法的具體用法?Python graph_tool.Graph怎麽用?Python graph_tool.Graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在graph_tool的用法示例。


在下文中一共展示了graph_tool.Graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: convert_to_graph_tool

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def convert_to_graph_tool(G):
  timer = utils.Timer()
  timer.tic()
  gtG = gt.Graph(directed=G.is_directed())
  gtG.ep['action'] = gtG.new_edge_property('int')

  nodes_list = G.nodes()
  nodes_array = np.array(nodes_list)

  nodes_id = np.zeros((nodes_array.shape[0],), dtype=np.int64)

  for i in range(nodes_array.shape[0]):
    v = gtG.add_vertex()
    nodes_id[i] = int(v)

  # d = {key: value for (key, value) in zip(nodes_list, nodes_id)}
  d = dict(itertools.izip(nodes_list, nodes_id))

  for src, dst, data in G.edges_iter(data=True):
    e = gtG.add_edge(d[src], d[dst])
    gtG.ep['action'][e] = data['action']
  nodes_to_id = d
  timer.toc(average=True, log_at=1, log_str='src.graph_utils.convert_to_graph_tool')
  return gtG, nodes_array, nodes_to_id 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:graph_utils.py

示例2: get_graph_tool_from_adjacency

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def get_graph_tool_from_adjacency(adjacency, directed=None):
    """Get graph_tool graph from adjacency matrix."""
    import graph_tool as gt
    adjacency_edge_list = adjacency
    if not directed:
        from scipy.sparse import tril
        adjacency_edge_list = tril(adjacency)
    g = gt.Graph(directed=directed)
    g.add_vertex(adjacency.shape[0])  # this adds adjacency.shap[0] vertices
    g.add_edge_list(np.transpose(adjacency_edge_list.nonzero()))
    weights = g.new_edge_property('double')
    for e in g.edges():
        # graph_tool uses the following convention,
        # which is opposite to the rest of scanpy
        weights[e] = adjacency[int(e.source()), int(e.target())]
    g.edge_properties['weight'] = weights
    return g 
開發者ID:colomemaria,項目名稱:epiScanpy,代碼行數:19,代碼來源:utils.py

示例3: get_igraph_from_adjacency

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def get_igraph_from_adjacency(adjacency, directed=None):
    """Get igraph graph from adjacency matrix."""
    import igraph as ig
    sources, targets = adjacency.nonzero()
    weights = adjacency[sources, targets]
    if isinstance(weights, np.matrix):
        weights = weights.A1
    g = ig.Graph(directed=directed)
    g.add_vertices(adjacency.shape[0])  # this adds adjacency.shap[0] vertices
    g.add_edges(list(zip(sources, targets)))
    try:
        g.es['weight'] = weights
    except:
        pass
    if g.vcount() != adjacency.shape[0]:
        logg.warn('The constructed graph has only {} nodes. '
                  'Your adjacency matrix contained redundant nodes.'
                  .format(g.vcount()))
    return g 
開發者ID:colomemaria,項目名稱:epiScanpy,代碼行數:21,代碼來源:utils.py

示例4: __from_nx_to_graph_tool

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def __from_nx_to_graph_tool(g, directed=None):
    """

    :param g:
    :param directed:
    :return:
    """

    if directed is None:
        directed = g.is_directed()

    if gt is None:
        raise ModuleNotFoundError(
            "Optional dependency not satisfied: install igraph to use the selected feature.")

    gt_g = gt.Graph(directed=directed)

    node_map = {v: i for i, v in enumerate(g.nodes())}

    gt_g.add_vertex(len(node_map))
    gt_g.add_edge_list([(node_map[u], node_map[v]) for u, v in g.edges()])

    return gt_g, {v: k for k, v in node_map.items()} 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:25,代碼來源:utils.py

示例5: __from_graph_tool_to_nx

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def __from_graph_tool_to_nx(graph, node_map=None, directed=None):

    if directed is None:
        directed = graph.is_directed()

    if directed:
        tp = nx.DiGraph()
    else:
        tp = nx.Graph()

    tp.add_nodes_from([int(v) for v in graph.vertices()])
    tp.add_edges_from([(int(e.source()), int(e.target()))
                       for e in graph.edges()])
    if node_map:
        nx.relabel_nodes(tp, node_map, copy=False)

    return tp 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:19,代碼來源:utils.py

示例6: __from_igraph_to_nx

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def __from_igraph_to_nx(ig, directed=None):
    """

    :param ig:
    :param directed:
    :return:
    """

    if ig is None:
        raise ModuleNotFoundError(
            "Optional dependency not satisfied: install igraph to use the selected feature.")

    if directed is None:
        directed = ig.is_directed()

    if directed:
        tp = nx.DiGraph()
    else:
        tp = nx.Graph()

    for e in ig.es:
        tp.add_edge(ig.vs[e.source]["name"], ig.vs[e.target]["name"], **e.attributes())


    return tp 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:27,代碼來源:utils.py

示例7: convert_graph_formats

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def convert_graph_formats(graph, desired_format, directed=None):
    """Converts from/to networkx/igraph


    :param graph: original graph object
    :param desired_format: desired final type. Either nx.Graph or ig.Graph
    :param directed: boolean, default **False**
    :return: the converted graph
    :raises TypeError: if input graph is neither an instance of nx.Graph nor ig.Graph
    """
    if isinstance(graph, desired_format):
        return graph
    elif desired_format is nx.Graph:
        return __from_igraph_to_nx(graph, directed)
    elif ig is not None and desired_format is ig.Graph:
        return __from_nx_to_igraph(graph, directed)
    else:
        raise TypeError(
            "The graph object should be either a networkx or an igraph one.") 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:21,代碼來源:utils.py

示例8: test_degree

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_degree(self):
        graph = graphs.Graph([
            [0, 1, 0],
            [1, 0, 2],
            [0, 2, 0],
        ])
        self.assertEqual(graph.is_directed(), False)
        np.testing.assert_allclose(graph.d, [1, 2, 1])
        np.testing.assert_allclose(graph.dw, [1, 3, 2])
        graph = graphs.Graph([
            [0, 1, 0],
            [0, 0, 2],
            [0, 2, 0],
        ])
        self.assertEqual(graph.is_directed(), True)
        np.testing.assert_allclose(graph.d, [0.5, 1.5, 1])
        np.testing.assert_allclose(graph.dw, [0.5, 2.5, 2]) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:19,代碼來源:test_graphs.py

示例9: test_is_directed

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_is_directed(self):
        graph = graphs.Graph([
            [0, 3, 0, 0],
            [3, 0, 4, 0],
            [0, 4, 0, 2],
            [0, 0, 2, 0],
        ])
        assert graph.W.nnz == 6
        self.assertEqual(graph.is_directed(), False)
        # In-place modification is not allowed anymore.
        # graph.W[0, 1] = 0
        # assert graph.W.nnz == 6
        # self.assertEqual(graph.is_directed(recompute=True), True)
        # graph.W[1, 0] = 0
        # assert graph.W.nnz == 6
        # self.assertEqual(graph.is_directed(recompute=True), False) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:18,代碼來源:test_graphs.py

示例10: test_differential_operator

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_differential_operator(self, n_vertices=98):
        r"""The Laplacian must always be the divergence of the gradient,
        whether the Laplacian is combinatorial or normalized, and whether the
        graph is directed or weighted."""
        def test_incidence_nx(graph):
            r"""Test that the incidence matrix corresponds to NetworkX."""
            incidence_pg = np.sign(graph.D.toarray())
            G = nx.OrderedDiGraph if graph.is_directed() else nx.OrderedGraph
            graph_nx = nx.from_scipy_sparse_matrix(graph.W, create_using=G)
            incidence_nx = nx.incidence_matrix(graph_nx, oriented=True)
            np.testing.assert_equal(incidence_pg, incidence_nx.toarray())
        for graph in [graphs.Graph(np.zeros((n_vertices, n_vertices))),
                      graphs.Graph(np.identity(n_vertices)),
                      graphs.Graph([[0, 0.8], [0.8, 0]]),
                      graphs.Graph([[1.3, 0], [0.4, 0.5]]),
                      graphs.ErdosRenyi(n_vertices, directed=False, seed=42),
                      graphs.ErdosRenyi(n_vertices, directed=True, seed=42)]:
            for lap_type in ['combinatorial', 'normalized']:
                graph.compute_laplacian(lap_type)
                graph.compute_differential_operator()
                L = graph.D.dot(graph.D.T)
                np.testing.assert_allclose(L.toarray(), graph.L.toarray())
                test_incidence_nx(graph) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:25,代碼來源:test_graphs.py

示例11: test_adjacency_types

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_adjacency_types(self, n_vertices=10):

        rs = np.random.RandomState(42)
        W = 10 * np.abs(rs.normal(size=(n_vertices, n_vertices)))
        W = W + W.T
        W = W - np.diag(np.diag(W))

        def test(adjacency):
            G = graphs.Graph(adjacency)
            G.compute_laplacian('combinatorial')
            G.compute_laplacian('normalized')
            G.estimate_lmax()
            G.compute_fourier_basis()
            G.compute_differential_operator()

        test(W)
        test(W.astype(np.float32))
        test(W.astype(np.int))
        test(sparse.csr_matrix(W))
        test(sparse.csr_matrix(W, dtype=np.float32))
        test(sparse.csr_matrix(W, dtype=np.int))
        test(sparse.csc_matrix(W))
        test(sparse.coo_matrix(W)) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:25,代碼來源:test_graphs.py

示例12: test_graphtool_multiedge_import

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_graphtool_multiedge_import(self):
        # Manualy create a graph with multiple edges
        g_gt = gt.Graph()
        g_gt.add_vertex(n=10)
        # connect edge (3,6) three times
        for i in range(3):
            g_gt.add_edge(g_gt.vertex(3), g_gt.vertex(6))
        g = graphs.Graph.from_graphtool(g_gt)
        self.assertEqual(g.W[3, 6], 3.0)

        eprop_double = g_gt.new_edge_property("double")

        # Set the weight of 2 out of the 3 edges. The last one has a default weight of 0
        e = g_gt.edge(3, 6, all_edges=True)
        eprop_double[e[0]] = 8.0
        eprop_double[e[1]] = 1.0

        g_gt.edge_properties["weight"] = eprop_double
        g3 = graphs.Graph.from_graphtool(g_gt)
        self.assertEqual(g3.W[3, 6], 9.0) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:22,代碼來源:test_graphs.py

示例13: test_graphtool_import_export

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_graphtool_import_export(self):
        # Import to PyGSP and export again to graph tool directly
        # create a random graphTool graph that does not contain multiple edges and no signal
        graph_gt = gt.generation.random_graph(100, lambda : (np.random.poisson(4), np.random.poisson(4)))

        eprop_double = graph_gt.new_edge_property("double")
        for e in graph_gt.edges():
            eprop_double[e] = random.random()
        graph_gt.edge_properties["weight"] = eprop_double

        graph2_gt = graphs.Graph.from_graphtool(graph_gt).to_graphtool()

        self.assertEqual(graph_gt.num_edges(), graph2_gt.num_edges(),
                         "the number of edges does not correspond")

        def key(edge): return str(edge.source()) + ":" + str(edge.target())

        for e1, e2 in zip(sorted(graph_gt.edges(), key=key), sorted(graph2_gt.edges(), key=key)):
            self.assertEqual(e1.source(), e2.source())
            self.assertEqual(e1.target(), e2.target())
        for v1, v2 in zip(graph_gt.vertices(), graph2_gt.vertices()):
            self.assertEqual(v1, v2) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:24,代碼來源:test_graphs.py

示例14: test_graphtool_signal_import

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_graphtool_signal_import(self):
        g_gt = gt.Graph()
        g_gt.add_vertex(10)

        g_gt.add_edge(g_gt.vertex(3), g_gt.vertex(6))
        g_gt.add_edge(g_gt.vertex(4), g_gt.vertex(6))
        g_gt.add_edge(g_gt.vertex(7), g_gt.vertex(2))

        vprop_double = g_gt.new_vertex_property("double")

        vprop_double[g_gt.vertex(0)] = 5
        vprop_double[g_gt.vertex(1)] = -3
        vprop_double[g_gt.vertex(2)] = 2.4

        g_gt.vertex_properties["signal"] = vprop_double
        g = graphs.Graph.from_graphtool(g_gt)
        self.assertEqual(g.signals["signal"][0], 5.0)
        self.assertEqual(g.signals["signal"][1], -3.0)
        self.assertEqual(g.signals["signal"][2], 2.4) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:21,代碼來源:test_graphs.py

示例15: test_break_join_signals

# 需要導入模塊: import graph_tool [as 別名]
# 或者: from graph_tool import Graph [as 別名]
def test_break_join_signals(self):
        """Multi-dim signals are broken on export and joined on import."""
        graph1 = graphs.Sensor(20, seed=42)
        graph1.set_signal(graph1.coords, 'coords')
        # networkx
        graph2 = graph1.to_networkx()
        graph2 = graphs.Graph.from_networkx(graph2)
        np.testing.assert_allclose(graph2.signals['coords'], graph1.coords)
        # graph-tool
        graph2 = graph1.to_graphtool()
        graph2 = graphs.Graph.from_graphtool(graph2)
        np.testing.assert_allclose(graph2.signals['coords'], graph1.coords)
        # save and load (need ordered dicts)
        if sys.version_info >= (3, 6):
            filename = 'graph.graphml'
            graph1.save(filename)
            graph2 = graphs.Graph.load(filename)
            np.testing.assert_allclose(graph2.signals['coords'], graph1.coords)
            os.remove(filename) 
開發者ID:epfl-lts2,項目名稱:pygsp,代碼行數:21,代碼來源:test_graphs.py


注:本文中的graph_tool.Graph方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。