當前位置: 首頁>>代碼示例>>Python>>正文


Python speech.SpeechClient方法代碼示例

本文整理匯總了Python中google.cloud.speech.SpeechClient方法的典型用法代碼示例。如果您正苦於以下問題:Python speech.SpeechClient方法的具體用法?Python speech.SpeechClient怎麽用?Python speech.SpeechClient使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在google.cloud.speech的用法示例。


在下文中一共展示了speech.SpeechClient方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gspeech_client

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def gspeech_client(self):
        """Creates the Google Speech API client, configures it, and sends/gets
        audio/text data for parsing.
        """
        language_code = 'en-US'
        client = speech.SpeechClient()
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=16000,
            language_code=language_code)
        streaming_config = types.StreamingRecognitionConfig(
            config=config,
            interim_results=True)
        # Hack from Google Speech Python docs, very pythonic c:
        requests = (types.StreamingRecognizeRequest(audio_content=content) for content in self._generator())
        responses = client.streaming_recognize(streaming_config, requests)
        self._listen_print_loop(responses) 
開發者ID:piraka9011,項目名稱:dialogflow_ros,代碼行數:19,代碼來源:mic_client.py

示例2: transcribe_data_sync

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_data_sync(speech_data, model='default', language_code='en-US'):
        # model in ['video', 'phone_call', 'command_and_search', 'default']

        if not gcloud_imported:
            _log.error("Cannot find google.cloud package!")
            return None
        client = speech.SpeechClient()

        audio = types.RecognitionAudio(content=speech_data)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=16000,
            language_code=language_code or 'en-US',
            model=model,
        )

        response = client.recognize(config, audio)
        # Each result is for a consecutive portion of the audio. Iterate through
        # them to get the transcripts for the entire audio file.
        assert len(response.results) <= 1
        for result in response.results:
            # The first alternative is the most likely one for this portion.
            # print(u'Transcript: {}'.format(result.alternatives[0].transcript))
            return result.alternatives[0].transcript 
開發者ID:daanzu,項目名稱:kaldi-active-grammar,代碼行數:26,代碼來源:alternative_dictation.py

示例3: transcribe_gcs

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_gcs(gcs_uri):
    """Transcribes the audio file specified by the gcs_uri."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    # [START speech_python_migration_config_gcs]
    audio = types.RecognitionAudio(uri=gcs_uri)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.FLAC,
        sample_rate_hertz=16000,
        language_code='en-US')
    # [END speech_python_migration_config_gcs]

    response = client.recognize(config, audio)
    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
# [END speech_transcribe_sync_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:24,代碼來源:transcribe.py

示例4: transcribe_gcs

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_gcs(gcs_uri):
    """Asynchronously transcribes the audio file specified by the gcs_uri."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    audio = types.RecognitionAudio(uri=gcs_uri)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.FLAC,
        sample_rate_hertz=16000,
        language_code='en-US')

    operation = client.long_running_recognize(config, audio)

    print('Waiting for operation to complete...')
    response = operation.result(timeout=90)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
        print('Confidence: {}'.format(result.alternatives[0].confidence))
# [END speech_transcribe_async_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:27,代碼來源:transcribe_async.py

示例5: transcribe_gcs_with_multichannel

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_gcs_with_multichannel(gcs_uri):
    """Transcribe the given audio file on GCS with
      multi channel."""
    # [START speech_transcribe_multichannel_gcs]
    from google.cloud import speech
    client = speech.SpeechClient()

    audio = speech.types.RecognitionAudio(uri=gcs_uri)

    config = speech.types.RecognitionConfig(
        encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=44100,
        language_code='en-US',
        audio_channel_count=2,
        enable_separate_recognition_per_channel=True)

    response = client.recognize(config, audio)

    for i, result in enumerate(response.results):
        alternative = result.alternatives[0]
        print('-' * 20)
        print('First alternative of result {}'.format(i))
        print(u'Transcript: {}'.format(alternative.transcript))
        print(u'Channel Tag: {}'.format(result.channel_tag))
    # [END speech_transcribe_multichannel_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:27,代碼來源:transcribe_multichannel.py

示例6: transcribe_model_selection_gcs

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_model_selection_gcs(gcs_uri, model):
    """Transcribe the given audio file asynchronously with
    the selected model."""
    from google.cloud import speech
    client = speech.SpeechClient()

    audio = speech.types.RecognitionAudio(uri=gcs_uri)

    config = speech.types.RecognitionConfig(
        encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US',
        model=model)

    operation = client.long_running_recognize(config, audio)

    print('Waiting for operation to complete...')
    response = operation.result(timeout=90)

    for i, result in enumerate(response.results):
        alternative = result.alternatives[0]
        print('-' * 20)
        print('First alternative of result {}'.format(i))
        print(u'Transcript: {}'.format(alternative.transcript))
# [END speech_transcribe_model_selection_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:27,代碼來源:transcribe_model_selection.py

示例7: main

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def main():
    # See http://g.co/cloud/speech/docs/languages
    # for a list of supported languages.
    language_code = 'en-US'  # a BCP-47 language tag

    client = speech.SpeechClient()
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=RATE,
        language_code=language_code)
    streaming_config = types.StreamingRecognitionConfig(
        config=config,
        interim_results=True)

    with MicrophoneStream(RATE, CHUNK) as stream:
        audio_generator = stream.generator()
        requests = (types.StreamingRecognizeRequest(audio_content=content)
                    for content in audio_generator)

        responses = client.streaming_recognize(streaming_config, requests)

        # Now, put the transcription responses to use.
        listen_print_loop(responses) 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:25,代碼來源:transcribe_streaming_mic.py

示例8: do_recognition

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def do_recognition(stream: bytes) -> Iterable:
    client = speech.SpeechClient()

    audio = types.RecognitionAudio(content=stream)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.OGG_OPUS,
        sample_rate_hertz=16000,
        language_code='ru-RU',
    )
    recognition = client.long_running_recognize(config, audio).result(timeout=90)
    return [result.alternatives[0].transcript for result in recognition.results] 
開發者ID:f213,項目名稱:selfmailbot,代碼行數:13,代碼來源:recognize.py

示例9: transcribe_gcs

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_gcs(mp4_file):
    audio_file_path = process_video(mp4_file) #Create audio file

    if audio_file_path:
        bucket_name = 'test-dictation' # Your gcloud bucket name
        print(mp4_file)
        audio_file_name = os.path.basename(audio_file_path) + '.ogg'
        print(audio_file_name)

        upload_to_gcloud(bucket_name, source_file_name=audio_file_path + '.ogg', destination_blob_name=audio_file_name)

        """Asynchronously transcribes the audio file specified by the gcs_uri."""

        client = speech.SpeechClient()
        audio = types.RecognitionAudio(
            uri="gs://" + bucket_name + "/" + audio_file_name)
        config = types.RecognitionConfig(
            encoding=enums.RecognitionConfig.AudioEncoding.OGG_OPUS,
            language_code='en-US',
            sample_rate_hertz=16000,
            enable_word_time_offsets=True
        )
        operation = client.long_running_recognize(config, audio)

        if not operation.done():
            print('Waiting for results...')

        result = operation.result()


        results = result.results

        raw_text_file = open( audio_file_path + '.txt', 'w')
        for result in results:
            for alternative in result.alternatives:
                raw_text_file.write(alternative.transcript + '\n')
        raw_text_file.close() #output raw text file of transcription

        format_transcript(results, audio_file_path) #output .srt formatted version of transcription
    else:
        return 
開發者ID:Naki21,項目名稱:google-speech-to-text,代碼行數:43,代碼來源:goog.py

示例10: __init__

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def __init__(self):
		super().__init__()
		self._capableOfArbitraryCapture = True
		self._isOnlineASR = True

		self._client: Optional[SpeechClient] = None
		self._streamingConfig: Optional[types.StreamingRecognitionConfig] = None 
開發者ID:project-alice-assistant,項目名稱:ProjectAlice,代碼行數:9,代碼來源:GoogleASR.py

示例11: onStart

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def onStart(self):
		super().onStart()
		os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = str(Path(self.Commons.rootDir(), 'credentials/googlecredentials.json'))

		self._client = SpeechClient()
		# noinspection PyUnresolvedReferences
		config = types.RecognitionConfig(
			encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
			sample_rate_hertz=self.ConfigManager.getAliceConfigByName('micSampleRate'),
			language_code=self.LanguageManager.activeLanguageAndCountryCode
		)

		self._streamingConfig = types.StreamingRecognitionConfig(config=config, interim_results=True) 
開發者ID:project-alice-assistant,項目名稱:ProjectAlice,代碼行數:15,代碼來源:GoogleASR.py

示例12: get_transcripts

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def get_transcripts(audio_data):
    client = speech.SpeechClient()
    audio = types.RecognitionAudio(content=audio_data)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US'
    )
    response = client.recognize(config, audio)
    return [result.alternatives[0].transcript for result in response.results] 
開發者ID:kkroening,項目名稱:ffmpeg-python,代碼行數:12,代碼來源:transcribe.py

示例13: transcribe_file

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_file(speech_file):
    """Transcribe the given audio file."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    import io
    client = speech.SpeechClient()

    # [START speech_python_migration_sync_request]
    # [START speech_python_migration_config]
    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US')
    # [END speech_python_migration_config]

    # [START speech_python_migration_sync_response]
    response = client.recognize(config, audio)
    # [END speech_python_migration_sync_request]
    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
    # [END speech_python_migration_sync_response]
# [END speech_transcribe_sync]


# [START speech_transcribe_sync_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:35,代碼來源:transcribe.py

示例14: transcribe_file

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_file(speech_file):
    """Transcribe the given audio file asynchronously."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    # [START speech_python_migration_async_request]
    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US')

    # [START speech_python_migration_async_response]
    operation = client.long_running_recognize(config, audio)
    # [END speech_python_migration_async_request]

    print('Waiting for operation to complete...')
    response = operation.result(timeout=90)

    # Each result is for a consecutive portion of the audio. Iterate through
    # them to get the transcripts for the entire audio file.
    for result in response.results:
        # The first alternative is the most likely one for this portion.
        print(u'Transcript: {}'.format(result.alternatives[0].transcript))
        print('Confidence: {}'.format(result.alternatives[0].confidence))
    # [END speech_python_migration_async_response]
# [END speech_transcribe_async]


# [START speech_transcribe_async_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:37,代碼來源:transcribe_async.py

示例15: transcribe_file_with_word_time_offsets

# 需要導入模塊: from google.cloud import speech [as 別名]
# 或者: from google.cloud.speech import SpeechClient [as 別名]
def transcribe_file_with_word_time_offsets(speech_file):
    """Transcribe the given audio file synchronously and output the word time
    offsets."""
    from google.cloud import speech
    from google.cloud.speech import enums
    from google.cloud.speech import types
    client = speech.SpeechClient()

    with io.open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = types.RecognitionAudio(content=content)
    config = types.RecognitionConfig(
        encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US',
        enable_word_time_offsets=True)

    response = client.recognize(config, audio)

    for result in response.results:
        alternative = result.alternatives[0]
        print(u'Transcript: {}'.format(alternative.transcript))

        for word_info in alternative.words:
            word = word_info.word
            start_time = word_info.start_time
            end_time = word_info.end_time
            print('Word: {}, start_time: {}, end_time: {}'.format(
                word,
                start_time.seconds + start_time.nanos * 1e-9,
                end_time.seconds + end_time.nanos * 1e-9))


# [START speech_transcribe_async_word_time_offsets_gcs] 
開發者ID:GoogleCloudPlatform,項目名稱:python-docs-samples,代碼行數:37,代碼來源:transcribe_word_time_offsets.py


注:本文中的google.cloud.speech.SpeechClient方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。