當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.LRScheduler方法代碼示例

本文整理匯總了Python中gluoncv.utils.LRScheduler方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.LRScheduler方法的具體用法?Python utils.LRScheduler怎麽用?Python utils.LRScheduler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gluoncv.utils的用法示例。


在下文中一共展示了utils.LRScheduler方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sanity

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def test_sanity():
    N = 1000
    constant = LRScheduler('constant', base_lr=0, target_lr=1, niters=N)
    linear = LRScheduler('linear', base_lr=1, target_lr=2, niters=N)
    cosine = LRScheduler('cosine', base_lr=3, target_lr=1, niters=N)
    poly = LRScheduler('poly', base_lr=1, target_lr=0, niters=N, power=2)
    step = LRScheduler('step', base_lr=1, target_lr=0, niters=N,
                       step_iter=[100, 500], step_factor=0.1)

    compare(constant, 0, 0)
    compare(constant, N-1, 0)
    compare(linear, 0, 1)
    compare(linear, N-1, 2)
    compare(cosine, 0, 3)
    compare(cosine, N-1, 1)
    compare(poly, 0, 1)
    compare(poly, N-1, 0)
    compare(step, 0, 1)
    compare(step, 100, 0.1)
    compare(step, 500, 0.01)
    compare(step, N-1, 0.01) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:23,代碼來源:test_lr_scheduler.py

示例2: test_params

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def test_params():
    N = 1000
    linear = LRScheduler('linear', base_lr=1, target_lr=2, niters=N)
    linear2 = LRScheduler('linear', baselr=1, targetlr=2, niters=N)
    linear3 = LRScheduler('linear', base_lr=1, target_lr=2, niters=N,
                          baselr=0, targetlr=1)

    linear4 = LRScheduler('linear', base_lr=1, target_lr=2, niters=N/2)
    linear5 = LRScheduler('linear', base_lr=1, target_lr=2, niters=N/2,
                          nepochs=N/2, iters_per_epoch=2)

    compare(linear, 0, 1)
    compare(linear, N-1, 2)
    compare(linear2, 0, 1)
    compare(linear2, N-1, 2)
    compare(linear3, 0, 1)
    compare(linear3, N-1, 2)
    compare(linear4, 0, 1)
    compare(linear4, N/2-1, 2)
    compare(linear5, 0, 1)
    compare(linear5, N/2-1, 1.5, rtol=0.01)
    compare(linear5, N-1, 2) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:24,代碼來源:test_lr_scheduler.py

示例3: test_composed_method

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def test_composed_method():
    N = 1000
    constant = LRScheduler('constant', base_lr=0, target_lr=1, niters=N)
    linear = LRScheduler('linear', base_lr=1, target_lr=2, niters=N)
    cosine = LRScheduler('cosine', base_lr=3, target_lr=1, niters=N)
    poly = LRScheduler('poly', base_lr=1, target_lr=0, niters=N, power=2)
    # components with niters=0 will be ignored
    null_cosine = LRScheduler('cosine', base_lr=3, target_lr=1, niters=0)
    null_poly = LRScheduler('cosine', base_lr=3, target_lr=1, niters=0)
    step = LRScheduler('step', base_lr=1, target_lr=0, niters=N,
                       step_iter=[100, 500], step_factor=0.1)
    arr = LRSequential([constant, null_cosine, linear, cosine, null_poly, poly, step])
    # constant
    for i in range(N):
        compare(arr, i, 0)
    # linear
    for i in range(N, 2*N):
        expect_linear = 2 + (1 - 2) * (1 - (i - N) / (N - 1))
        compare(arr, i, expect_linear)
    # cosine
    for i in range(2*N, 3*N):
        expect_cosine = 1 + (3 - 1) * ((1 + cos(pi * (i - 2*N) / (N - 1))) / 2)
        compare(arr, i, expect_cosine)
    # poly
    for i in range(3*N, 4*N):
        expect_poly = 0 + (1 - 0) * (pow(1 - (i - 3*N) / (N - 1), 2))
        compare(arr, i, expect_poly)
    for i in range(4*N, 5*N):
        if i - 4*N < 100:
            expect_step = 1
        elif i - 4*N < 500:
            expect_step = 0.1
        else:
            expect_step = 0.01
        compare(arr, i, expect_step)
    # out-of-bound index
    compare(arr, 10*N, 0.01)
    compare(arr, -1, 0) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:40,代碼來源:test_lr_scheduler.py

示例4: test_single_method

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def test_single_method():
    N = 1000
    constant = LRScheduler('constant', base_lr=0, target_lr=1, niters=N)
    linear = LRScheduler('linear', base_lr=1, target_lr=2, niters=N)
    cosine = LRScheduler('cosine', base_lr=3, target_lr=1, niters=N)
    poly = LRScheduler('poly', base_lr=1, target_lr=0, niters=N, power=2)
    step = LRScheduler('step', base_lr=1, target_lr=0, niters=N,
                       step_iter=[100, 500], step_factor=0.1)
    step2 = LRScheduler('step', base_lr=1, target_lr=0,
                        nepochs=2, iters_per_epoch=N/2,
                        step_iter=[100, 500], step_factor=0.1)
    step3 = LRScheduler('step', base_lr=1, target_lr=0,
                        nepochs=100, iters_per_epoch=N/100,
                        step_epoch=[10, 50], step_factor=0.1)

    # Test numerical value
    for i in range(N):
        compare(constant, i, 0)

        expect_linear = 2 + (1 - 2) * (1 - i / (N - 1))
        compare(linear, i, expect_linear)

        expect_cosine = 1 + (3 - 1) * ((1 + cos(pi * i / (N-1))) / 2)
        compare(cosine, i, expect_cosine)

        expect_poly = 0 + (1 - 0) * (pow(1 - i / (N-1), 2))
        compare(poly, i, expect_poly)

        if i < 100:
            expect_step = 1
        elif i < 500:
            expect_step = 0.1
        else:
            expect_step = 0.01
        compare(step, i, expect_step)
        compare(step2, i, expect_step)
        compare(step3, i, expect_step)

    # Test out-of-range updates
    for i in range(10):
        constant.update(i - 3)
        linear.update(i - 3)
        cosine.update(i - 3)
        poly.update(i - 3) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:46,代碼來源:test_lr_scheduler.py

示例5: __init__

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def __init__(self, args):
        self.args = args
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
        ])
        # dataset and dataloader
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                       'crop_size': args.crop_size}
        trainset = get_segmentation_dataset(
            args.dataset, split=args.train_split, mode='train', **data_kwargs)
        valset = get_segmentation_dataset(
            args.dataset, split='val', mode='val', **data_kwargs)
        self.train_data = gluon.data.DataLoader(
            trainset, args.batch_size, shuffle=True, last_batch='rollover',
            num_workers=args.workers)
        self.eval_data = gluon.data.DataLoader(valset, args.test_batch_size,
            last_batch='rollover', num_workers=args.workers)
        # create network
        if args.model_zoo is not None:
            model = get_model(args.model_zoo, pretrained=True)
        else:
            model = get_segmentation_model(model=args.model, dataset=args.dataset,
                                           backbone=args.backbone, norm_layer=args.norm_layer,
                                           norm_kwargs=args.norm_kwargs, aux=args.aux,
                                           crop_size=args.crop_size)
        model.cast(args.dtype)
        print(model)
        self.net = DataParallelModel(model, args.ctx, args.syncbn)
        self.evaluator = DataParallelModel(SegEvalModel(model), args.ctx)
        # resume checkpoint if needed
        if args.resume is not None:
            if os.path.isfile(args.resume):
                model.load_parameters(args.resume, ctx=args.ctx)
            else:
                raise RuntimeError("=> no checkpoint found at '{}'" \
                    .format(args.resume))
        # create criterion
        criterion = MixSoftmaxCrossEntropyLoss(args.aux, aux_weight=args.aux_weight)
        self.criterion = DataParallelCriterion(criterion, args.ctx, args.syncbn)
        # optimizer and lr scheduling
        self.lr_scheduler = LRScheduler(mode='poly', base_lr=args.lr,
                                        nepochs=args.epochs,
                                        iters_per_epoch=len(self.train_data),
                                        power=0.9)
        kv = mx.kv.create(args.kvstore)
        optimizer_params = {'lr_scheduler': self.lr_scheduler,
                            'wd':args.weight_decay,
                            'momentum': args.momentum}
        if args.dtype == 'float16':
            optimizer_params['multi_precision'] = True

        if args.no_wd:
            for k, v in self.net.module.collect_params('.*beta|.*gamma|.*bias').items():
                v.wd_mult = 0.0

        self.optimizer = gluon.Trainer(self.net.module.collect_params(), 'sgd',
                                       optimizer_params, kvstore = kv)
        # evaluation metrics
        self.metric = gluoncv.utils.metrics.SegmentationMetric(trainset.num_class) 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:63,代碼來源:train.py

示例6: __init__

# 需要導入模塊: from gluoncv import utils [as 別名]
# 或者: from gluoncv.utils import LRScheduler [as 別名]
def __init__(self, args):
        self.args = args
        # image transform
        input_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
        ])
        # dataset and dataloader
        trainset = get_segmentation_dataset(
            args.dataset, split='train', transform=input_transform)
        valset = get_segmentation_dataset(
            args.dataset, split='val', transform=input_transform)
        self.train_data = gluon.data.DataLoader(
            trainset, args.batch_size, shuffle=True, last_batch='rollover',
            num_workers=args.workers)
        self.eval_data = gluon.data.DataLoader(valset, args.test_batch_size,
            last_batch='keep', num_workers=args.workers)
        # create network
        model = get_segmentation_model(model=args.model, dataset=args.dataset,
                                       backbone=args.backbone, norm_layer=args.norm_layer,
                                       aux=args.aux)
        print(model)
        self.net = DataParallelModel(model, args.ctx, args.syncbn)
        self.evaluator = DataParallelModel(SegEvalModel(model), args.ctx)
        # resume checkpoint if needed
        if args.resume is not None:
            if os.path.isfile(args.resume):
                model.load_params(args.resume, ctx=args.ctx)
            else:
                raise RuntimeError("=> no checkpoint found at '{}'" \
                    .format(args.resume))
        # create criterion
        criterion = SoftmaxCrossEntropyLossWithAux(args.aux)
        self.criterion = DataParallelCriterion(criterion, args.ctx, args.syncbn)
        # optimizer and lr scheduling
        self.lr_scheduler = LRScheduler(mode='poly', baselr=args.lr, niters=len(self.train_data), 
                                        nepochs=args.epochs)
        kv = mx.kv.create(args.kvstore)
        self.optimizer = gluon.Trainer(self.net.module.collect_params(), 'sgd',
                                       {'lr_scheduler': self.lr_scheduler,
                                        'wd':args.weight_decay,
                                        'momentum': args.momentum,
                                        'multi_precision': True},
                                        kvstore = kv) 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:46,代碼來源:train.py


注:本文中的gluoncv.utils.LRScheduler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。