當前位置: 首頁>>代碼示例>>Python>>正文


Python data.imagenet方法代碼示例

本文整理匯總了Python中gluoncv.data.imagenet方法的典型用法代碼示例。如果您正苦於以下問題:Python data.imagenet方法的具體用法?Python data.imagenet怎麽用?Python data.imagenet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gluoncv.data的用法示例。


在下文中一共展示了data.imagenet方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_data_loader

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def get_data_loader(data_dir, batch_size, num_workers):
    normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
        return data, label
    if opt.mode == 'symbolic':
        val_data = mx.io.NDArrayIter(
            mx.nd.random.normal(shape=(opt.dataset_size, 3, 224, 224)),
            label=mx.nd.array(range(opt.dataset_size)),
            batch_size=batch_size,
        )
        transform_test = transforms.Compose([
            transforms.Resize(256, keep_ratio=True),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize
        ])
        val_data = gluon.data.DataLoader(
            imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
            batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return val_data, batch_fn 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:25,代碼來源:infer_imagenet.py

示例2: main

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def main():
    data = mx.sym.var('data')
    if opt.dtype == 'float16':
        data = mx.sym.Cast(data=data, dtype=np.float16)
        net.cast(np.float16)
    out = net(data)
    if opt.dtype == 'float16':
        out = mx.sym.Cast(data=out, dtype=np.float32)
    softmax = mx.sym.SoftmaxOutput(out, name='softmax')

    # We need to pass the data_iterator to Module so that when the number of workers
    # changes, the iterator is updated with new batch size and partition size.
    mod = mx.mod.Module(softmax, context=context, data_iterator=data_iterator_fn)
    if opt.use_pretrained:
        arg_params = {} 
        for x in net.collect_params().values():
            x.reset_ctx(mx.cpu())
            arg_params[x.name] = x.data()
    else:
        arg_params = None
    mod.fit(train_data,
            arg_params=arg_params,
            eval_data = val_data,
            num_epoch=opt.num_epochs,
            kvstore=kv,
            batch_end_callback = ElasticSpeedometer(kv, batch_size, max(1, opt.log_interval)),
            epoch_end_callback = mx.callback.do_checkpoint('imagenet-%s'% opt.model, period=save_frequency),
            optimizer = optimizer,
            optimizer_params=optimizer_params,
            initializer=initializer) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:32,代碼來源:train_resnet.py

示例3: parse_args

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def parse_args():
    parser = argparse.ArgumentParser(description='Train a model for image classification.')
    parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
                        help='Imagenet directory for validation.')
    parser.add_argument('--rec-dir', type=str, default='',
                        help='recio directory for validation.')
    parser.add_argument('--batch-size', type=int, default=32,
                        help='training batch size per device (CPU/GPU).')
    parser.add_argument('--num-gpus', type=int, default=0,
                        help='number of gpus to use.')
    parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
                        help='number of preprocessing workers')
    parser.add_argument('--model', type=str, required=True,
                        help='type of model to use. see vision_model for options.')
    parser.add_argument('--quantized', action='store_true',
                        help='use int8 pretrained model')
    parser.add_argument('--input-size', type=int, default=224,
                        help='input shape of the image, default is 224.')
    parser.add_argument('--num-batches', type=int, default=100,
                        help='run specified number of batches for inference')
    parser.add_argument('--benchmark', action='store_true',
                        help='use synthetic data to evalute benchmark')
    parser.add_argument('--crop-ratio', type=float, default=0.875,
                        help='The ratio for crop and input size, for validation dataset only')
    parser.add_argument('--params-file', type=str,
                        help='local parameter file to load, instead of pre-trained weight.')
    parser.add_argument('--dtype', type=str,
                        help='training data type')
    parser.add_argument('--use_se', action='store_true',
                        help='use SE layers or not in resnext. default is false.')
    opt = parser.parse_args()
    return opt 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:34,代碼來源:verify_pretrained.py

示例4: get_data_loader

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def get_data_loader(data_dir, batch_size, num_workers, opt):
    """
       Creates and returns data MXNet Data Loader object and a function that splits data into batches
    """
    normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
        return data, label
    if opt.mode == 'symbolic':
        val_data = mx.io.NDArrayIter(
            mx.nd.random.normal(shape=(opt.dataset_size, 3, 224, 224), ctx=context),
            label=mx.nd.array(range(opt.dataset_size)),
            batch_size=batch_size,
        )
        transform_test = transforms.Compose([
            transforms.Resize(256, keep_ratio=True),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize
        ])
        val_data = gluon.data.DataLoader(
            imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
            batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return val_data, batch_fn 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:28,代碼來源:infer_imagenet_gpu.py

示例5: get_data_loader

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def get_data_loader(data_dir, batch_size, num_workers):
    normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    jitter_param = 0.4
    lighting_param = 0.1
    input_size = opt.input_size
    crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875
    resize = int(math.ceil(input_size / crop_ratio))

    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
        return data, label

    transform_train = transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomFlipLeftRight(),
        transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
                                     saturation=jitter_param),
        transforms.RandomLighting(lighting_param),
        transforms.ToTensor(),
        normalize
    ])
    transform_test = transforms.Compose([
        transforms.Resize(resize, keep_ratio=True),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        normalize
    ])

    train_data = gluon.data.DataLoader(
        imagenet.classification.ImageNet(data_dir, train=True).transform_first(transform_train),
        batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers)
    val_data = gluon.data.DataLoader(
        imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
        batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_data, val_data, batch_fn 
開發者ID:miraclewkf,項目名稱:MXNet-Deep-Learning-in-Action,代碼行數:39,代碼來源:train_imagenet.py

示例6: parse_args

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def parse_args():
    parser = argparse.ArgumentParser(description='Train a model for image classification.')
    parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
                        help='training and validation pictures to use.')
    parser.add_argument('--rec-train', type=str, default='~/.mxnet/datasets/imagenet/rec/train.rec',
                        help='the training data')
    parser.add_argument('--rec-train-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/train.idx',
                        help='the index of training data')
    parser.add_argument('--rec-val', type=str, default='~/.mxnet/datasets/imagenet/rec/val.rec',
                        help='the validation data')
    parser.add_argument('--rec-val-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/val.idx',
                        help='the index of validation data')
    parser.add_argument('--use-rec', action='store_true',
                        help='use image record iter for data input. default is false.')
    parser.add_argument('--batch-size', type=int, default=32,
                        help='training batch size per device (CPU/GPU).')
    parser.add_argument('--dtype', type=str, default='float32',
                        help='data type for training. default is float32')
    parser.add_argument('--num-gpus', type=int, default=0,
                        help='number of gpus to use.')
    parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
                        help='number of preprocessing workers')
    parser.add_argument('--mode', type=str,
                        help='mode in which to train the model. options are symbolic, imperative, hybrid')
    parser.add_argument('--model', type=str, default='resnet101_v1d_hi',
                        help='type of model to use. see vision_model for options.')
    parser.add_argument('--ratio', type=float, default=0.,
                        help='percentage of the low frequency part')
    parser.add_argument('--input-size', type=int, default=224,
                        help='size of the input image size. default is 224')
    parser.add_argument('--crop-ratio', type=float, default=0.875,
                        help='Crop ratio during validation. default is 0.875')
    parser.add_argument('--use-se', action='store_true',
                        help='use SE layers or not in resnext. default is false.')
    parser.add_argument('--batch-norm', action='store_true',
                        help='enable batch normalization or not in vgg. default is false.')
    parser.add_argument('--resume-params', type=str, default='',
                        help='path of parameters to load from.')
    opt = parser.parse_args()
    return opt 
開發者ID:facebookresearch,項目名稱:OctConv,代碼行數:42,代碼來源:score.py

示例7: get_data_loader

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def get_data_loader(data_dir, batch_size, num_workers):
    normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    jitter_param = 0.4
    lighting_param = 0.1

    def batch_fn(batch, ctx):
        data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
        return data, label

    transform_train = transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomFlipLeftRight(),
        transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
                                     saturation=jitter_param),
        transforms.RandomLighting(lighting_param),
        transforms.ToTensor(),
        normalize
    ])
    transform_test = transforms.Compose([
        transforms.Resize(256, keep_ratio=True),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        normalize
    ])

    train_data = gluon.data.DataLoader(
        imagenet.classification.ImageNet(data_dir, train=True).transform_first(transform_train),
        batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers)
    val_data = gluon.data.DataLoader(
        imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
        batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_data, val_data, batch_fn 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:36,代碼來源:train_imagenet.py

示例8: train

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def train(ctx):
    if isinstance(ctx, mx.Context):
        ctx = [ctx]
    net.initialize(initializer, ctx=ctx)

    trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params, kvstore=kv)

    L = gluon.loss.SoftmaxCrossEntropyLoss()

    best_val_score = 1

    for epoch in range(opt.num_epochs):
        tic = time.time()
        if opt.use_rec:
            train_data.reset()
        acc_top1.reset()
        btic = time.time()

        for i, batch in enumerate(train_data):
            data, label = batch_fn(batch, ctx)
            with ag.record():
                outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
                loss = [L(yhat, y) for yhat, y in zip(outputs, label)]
            for l in loss:
                l.backward()
            trainer.step(batch_size)

            acc_top1.update(label, outputs)
            if opt.log_interval and not (i+1)%opt.log_interval:
                _, top1 = acc_top1.get()
                err_top1 = 1-top1
                logging.info('Epoch[%d] Batch [%d]\tSpeed: %f samples/sec\tlr=%f\taccuracy=%f'%(
                             epoch, i, batch_size*opt.log_interval/(time.time()-btic), trainer.learning_rate, top1))
                btic = time.time()

        _, top1 = acc_top1.get()
        err_top1 = 1-top1
        throughput = int(batch_size * i /(time.time() - tic))

        err_top1_val, err_top5_val = test(ctx, val_data)

        logging.info('[Epoch %d] Train-accuracy=%f'%(epoch, top1))
        logging.info('[Epoch %d] Speed: %d samples/sec\tTime cost=%f'%(epoch, throughput, time.time()-tic))
        logging.info('[Epoch %d] Validation-accuracy=%f'%(epoch, 1 - err_top1_val))
        logging.info('[Epoch %d] Validation-top_k_accuracy_5=%f'%(epoch, 1 - err_top5_val))

        if save_frequency and err_top1_val < best_val_score and epoch > 50:
            best_val_score = err_top1_val
            net.save_parameters('%s/%.4f-imagenet-%s-%d-best.params'%(save_dir, best_val_score, model_name, epoch))

        if save_frequency and save_dir and (epoch + 1) % save_frequency == 0:
            net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, epoch))

    if save_frequency and save_dir:
        net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, opt.num_epochs-1)) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:57,代碼來源:train_resnet.py

示例9: parse_args

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def parse_args():
    parser = argparse.ArgumentParser(description='Train a model for image classification.')
    parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
                        help='Imagenet directory for validation.')
    parser.add_argument('--rec-dir', type=str, default='',
                        help='recio directory for validation.')
    parser.add_argument('--batch-size', type=int, default=32,
                        help='training batch size per device (CPU/GPU).')
    parser.add_argument('--num-gpus', type=int, default=0,
                        help='number of gpus to use.')
    parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
                        help='number of preprocessing workers')
    parser.add_argument('--model', type=str, default='model', required=False,
                        help='type of model to use. see vision_model for options.')
    parser.add_argument('--deploy', action='store_true',
                        help='whether load static model for deployment')
    parser.add_argument('--model-prefix', type=str, required=False,
                        help='load static model as hybridblock.')
    parser.add_argument('--quantized', action='store_true',
                        help='use int8 pretrained model')
    parser.add_argument('--input-size', type=int, default=224,
                        help='input shape of the image, default is 224.')
    parser.add_argument('--num-batches', type=int, default=100,
                        help='run specified number of batches for inference')
    parser.add_argument('--benchmark', action='store_true',
                        help='use synthetic data to evalute benchmark')
    parser.add_argument('--crop-ratio', type=float, default=0.875,
                        help='The ratio for crop and input size, for validation dataset only')
    parser.add_argument('--params-file', type=str,
                        help='local parameter file to load, instead of pre-trained weight.')
    parser.add_argument('--dtype', type=str,
                        help='training data type')
    parser.add_argument('--use_se', action='store_true',
                        help='use SE layers or not in resnext. default is false.')
    parser.add_argument('--calibration', action='store_true',
                        help='quantize model')
    parser.add_argument('--num-calib-batches', type=int, default=5,
                        help='number of batches for calibration')
    parser.add_argument('--quantized-dtype', type=str, default='auto',
                        choices=['auto', 'int8', 'uint8'],
                        help='quantization destination data type for input data')
    parser.add_argument('--calib-mode', type=str, default='naive',
                        help='calibration mode used for generating calibration table for the quantized symbol; supports'
                             ' 1. none: no calibration will be used. The thresholds for quantization will be calculated'
                             ' on the fly. This will result in inference speed slowdown and loss of accuracy'
                             ' in general.'
                             ' 2. naive: simply take min and max values of layer outputs as thresholds for'
                             ' quantization. In general, the inference accuracy worsens with more examples used in'
                             ' calibration. It is recommended to use `entropy` mode as it produces more accurate'
                             ' inference results.'
                             ' 3. entropy: calculate KL divergence of the fp32 output and quantized output for optimal'
                             ' thresholds. This mode is expected to produce the best inference accuracy of all three'
                             ' kinds of quantized models if the calibration dataset is representative enough of the'
                             ' inference dataset.')
    opt = parser.parse_args()
    return opt 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:58,代碼來源:verify_pretrained.py

示例10: train

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import imagenet [as 別名]
def train(ctx):
    if isinstance(ctx, mx.Context):
        ctx = [ctx]
    net.initialize(mx.init.MSRAPrelu(), ctx=ctx)

    trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params)

    L = gluon.loss.SoftmaxCrossEntropyLoss()

    best_val_score = 1

    for epoch in range(opt.num_epochs):
        tic = time.time()
        if opt.use_rec:
            train_data.reset()
        acc_top1.reset()
        btic = time.time()

        for i, batch in enumerate(train_data):
            data, label = batch_fn(batch, ctx)
            with ag.record():
                outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
                loss = [L(yhat, y) for yhat, y in zip(outputs, label)]
            for l in loss:
                l.backward()
            lr_scheduler.update(i, epoch)
            trainer.step(batch_size)

            acc_top1.update(label, outputs)
            if opt.log_interval and not (i+1)%opt.log_interval:
                _, top1 = acc_top1.get()
                err_top1 = 1-top1
                logging.info('Epoch[%d] Batch [%d]\tSpeed: %f samples/sec\ttop1-err=%f\tlr=%f'%(
                             epoch, i, batch_size*opt.log_interval/(time.time()-btic), err_top1,
                             trainer.learning_rate))
                btic = time.time()

        _, top1 = acc_top1.get()
        err_top1 = 1-top1
        throughput = int(batch_size * i /(time.time() - tic))

        err_top1_val, err_top5_val = test(ctx, val_data)

        logging.info('[Epoch %d] training: err-top1=%f'%(epoch, err_top1))
        logging.info('[Epoch %d] speed: %d samples/sec\ttime cost: %f'%(epoch, throughput, time.time()-tic))
        logging.info('[Epoch %d] validation: err-top1=%f err-top5=%f'%(epoch, err_top1_val, err_top5_val))

        if err_top1_val < best_val_score and epoch > 50:
            best_val_score = err_top1_val
            net.save_parameters('%s/%.4f-imagenet-%s-%d-best.params'%(save_dir, best_val_score, model_name, epoch))

        if save_frequency and save_dir and (epoch + 1) % save_frequency == 0:
            net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, epoch))

    if save_frequency and save_dir:
        net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, opt.num_epochs-1)) 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:58,代碼來源:train_imagenet.py


注:本文中的gluoncv.data.imagenet方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。