當前位置: 首頁>>代碼示例>>Python>>正文


Python data.COCODetection方法代碼示例

本文整理匯總了Python中gluoncv.data.COCODetection方法的典型用法代碼示例。如果您正苦於以下問題:Python data.COCODetection方法的具體用法?Python data.COCODetection怎麽用?Python data.COCODetection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gluoncv.data的用法示例。


在下文中一共展示了data.COCODetection方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = VOCLike(root='D:\VOCdevkit', splits=[(2028, 'trainval')])
        val_dataset = VOCLike(root='D:\VOCdevkit', splits=[(2028, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape))
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.num_samples < 0:
        args.num_samples = len(train_dataset)
    if args.mixup:
        from gluoncv.data import MixupDetection
        train_dataset = MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric 
開發者ID:njvisionpower,項目名稱:Safety-Helmet-Wearing-Dataset,代碼行數:21,代碼來源:train_yolo.py

示例2: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    elif dataset.lower() == 'visualgenome':
        train_dataset = VGObject(root=os.path.join('~', '.mxnet', 'datasets', 'visualgenome'),
                                 splits='detections_train', use_crowd=False)
        val_dataset = VGObject(root=os.path.join('~', '.mxnet', 'datasets', 'visualgenome'),
                               splits='detections_val', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.mixup:
        from gluoncv.data.mixup import detection
        train_dataset = detection.MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:dgl,代碼行數:25,代碼來源:train_faster_rcnn.py

示例3: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_train2017')
        val_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape), post_affine=get_post_transform)
        # coco validation is slow, consider increase the validation interval
        if args.val_interval == 1:
            args.val_interval = 10
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.num_samples < 0:
        args.num_samples = len(train_dataset)
    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:23,代碼來源:train_center_net.py

示例4: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_train2017')
        val_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape))
        # coco validation is slow, consider increase the validation interval
        if args.val_interval == 1:
            args.val_interval = 10
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:21,代碼來源:train_ssd.py

示例5: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape))
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.num_samples < 0:
        args.num_samples = len(train_dataset)
    if args.mixup:
        from gluoncv.data import MixupDetection
        train_dataset = MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:23,代碼來源:train_yolo3.py

示例6: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() in ['clipart', 'comic', 'watercolor']:
        root = os.path.join('~', '.mxnet', 'datasets', dataset.lower())
        train_dataset = gdata.CustomVOCDetection(root=root, splits=[('', 'train')],
                                                 generate_classes=True)
        val_dataset = gdata.CustomVOCDetection(root=root, splits=[('', 'test')],
                                               generate_classes=True)
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.mixup:
        from gluoncv.data.mixup import detection
        train_dataset = detection.MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:train_faster_rcnn.py

示例7: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017')
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape))
        # coco validation is slow, consider increase the validation interval
        if args.val_interval == 1:
            args.val_interval = 10
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:21,代碼來源:train_ssd.py

示例8: test_coco_detection

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def test_coco_detection():
    if not osp.isdir(osp.expanduser('~/.mxnet/datasets/coco')):
        return

    # use valid only, loading training split is very slow
    val = data.COCODetection(splits=('instances_val2017'))
    name = str(val)
    assert len(val.classes) > 0

    for _ in range(10):
        index = np.random.randint(0, len(val))
        _ = val[index] 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:14,代碼來源:test_data_datasets.py

示例9: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, data_shape):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(data_shape, data_shape), post_affine=get_post_transform)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:14,代碼來源:eval_center_net.py

示例10: get_dali_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dali_dataset(dataset_name, devices, args):
    if dataset_name.lower() == "coco":
        # training
        expanded_file_root = os.path.expanduser(args.dataset_root)
        coco_root = os.path.join(expanded_file_root,
                                 'coco',
                                 'train2017')
        coco_annotations = os.path.join(expanded_file_root,
                                        'coco',
                                        'annotations',
                                        'instances_train2017.json')
        if args.horovod:
            train_dataset = [gdata.COCODetectionDALI(num_shards=hvd.size(), shard_id=hvd.rank(), file_root=coco_root,
                                                     annotations_file=coco_annotations, device_id=hvd.local_rank())]
        else:
            train_dataset = [gdata.COCODetectionDALI(num_shards= len(devices), shard_id=i, file_root=coco_root,
                                                     annotations_file=coco_annotations, device_id=i) for i, _ in enumerate(devices)]

        # validation
        if (not args.horovod or hvd.rank() == 0):
            val_dataset = gdata.COCODetection(root=os.path.join(args.dataset_root + '/coco'),
                                              splits='instances_val2017',
                                              skip_empty=False)
            val_metric = COCODetectionMetric(
                val_dataset, args.save_prefix + '_eval', cleanup=True,
                data_shape=(args.data_shape, args.data_shape))
        else:
            val_dataset = None
            val_metric = None
    else:
        raise NotImplementedError('Dataset: {} not implemented with DALI.'.format(dataset_name))

    return train_dataset, val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:35,代碼來源:train_ssd.py

示例11: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, data_shape):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(data_shape, data_shape))
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:14,代碼來源:eval_yolo.py

示例12: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval',
                                         cleanup=not args.save_json)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:14,代碼來源:eval_faster_rcnn.py

示例13: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017')
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:16,代碼來源:train_cascade_rfcn.py

示例14: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.75, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval',
                                         cleanup=not args.save_json)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:14,代碼來源:eval_cascade_rfcn_mAP.py

示例15: get_dataset

# 需要導入模塊: from gluoncv import data [as 別名]
# 或者: from gluoncv.data import COCODetection [as 別名]
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric 
開發者ID:zzdang,項目名稱:cascade_rcnn_gluon,代碼行數:16,代碼來源:train_faster_rcnn.py


注:本文中的gluoncv.data.COCODetection方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。