本文整理匯總了Python中glob.glob.glob方法的典型用法代碼示例。如果您正苦於以下問題:Python glob.glob方法的具體用法?Python glob.glob怎麽用?Python glob.glob使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類glob.glob
的用法示例。
在下文中一共展示了glob.glob方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: save_pyscript
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def save_pyscript(tmpdir, isotype="isosurface"):
homof = glob(os.path.join(tmpdir, 'Psi*_HOMO.cube'))[0]
lumof = glob(os.path.join(tmpdir, 'Psi*_LUMO.cube'))[0]
with open("frontier.py", "w") as f:
f.write('from pymol import *\n')
f.write('cmd.load("{0}", "HOMO")\n'.format(homof))
f.write('cmd.load("{0}", "LUMO")\n'.format(lumof))
f.write('cmd.load("{0}")\n'.format(os.path.join(tmpdir, "target.mol")))
if isotype == "isomesh":
f.write('cmd.isomesh("HOMO_A", "HOMO", -0.02)\n')
f.write('cmd.isomesh("HOMO_B", "HOMO", 0.02)\n')
f.write('cmd.isomesh("LUMO_A", "LUMO", 0.02)\n')
f.write('cmd.isomesh("LUMO_B", "LUMO", -0.02)\n')
else:
f.write('cmd.isosurface("HOMO_A", "HOMO", -0.02)\n')
f.write('cmd.isosurface("HOMO_B", "HOMO", 0.02)\n')
f.write('cmd.isosurface("LUMO_A", "LUMO", 0.02)\n')
f.write('cmd.isosurface("LUMO_B", "LUMO", -0.02)\n')
f.write('cmd.color("blue", "HOMO_A")\n')
f.write('cmd.color("red", "HOMO_B")\n')
f.write('cmd.color("blue", "LUMO_A")\n')
f.write('cmd.color("red", "LUMO_B")\n')
f.write('cmd.disable("LUMO_A")\n')
f.write('cmd.disable("LUMO_B")\n')
示例2: _average
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _average(args):
from glob import glob
from .io import load_locs, NoMetadataFileError
from picasso.gui import average
kwargs = {"iterations": args.iterations, "oversampling": args.oversampling}
paths = glob(args.file)
if paths:
for path in paths:
print("Averaging {}".format(path))
try:
locs, info = load_locs(path)
except NoMetadataFileError:
continue
kwargs["path_basename"] = os.path.splitext(path)[0] + "_avg"
average(locs, info, **kwargs)
示例3: _hdf2visp
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _hdf2visp(path, pixel_size):
from glob import glob
paths = glob(path)
if paths:
from .io import load_locs
import os.path
from numpy import savetxt
for path in paths:
print("Converting {}".format(path))
locs, info = load_locs(path)
locs = locs[["x", "y", "z", "photons", "frame"]].copy()
locs.x *= pixel_size
locs.y *= pixel_size
outname = os.path.splitext(path)[0] + ".3d"
savetxt(
outname,
locs,
fmt=["%.1f", "%.1f", "%.1f", "%.1f", "%d"],
newline="\r\n",
)
示例4: _hdf2csv
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _hdf2csv(path):
from glob import glob
import pandas as pd
from tqdm import tqdm as _tqdm
from os.path import isdir
if isdir(path):
paths = glob(path + "/*.hdf5")
else:
paths = glob(path)
if paths:
import os.path
for path in _tqdm(paths):
base, ext = os.path.splitext(path)
if ext == ".hdf5":
print("Converting {}".format(path))
out_path = base + ".csv"
locs = pd.read_hdf(path)
print("A total of {} rows loaded".format(len(locs)))
locs.to_csv(out_path, sep=",", encoding="utf-8")
print("Complete.")
示例5: _cluster_combine
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _cluster_combine(files):
import glob
paths = glob.glob(files)
if paths:
from . import io, postprocess
for path in paths:
try:
locs, info = io.load_locs(path)
except io.NoMetadataFileError:
continue
combined_locs = postprocess.cluster_combine(locs)
base, ext = os.path.splitext(path)
combined_info = {"Generated by": "Picasso Combine"}
info.append(combined_info)
io.save_locs(base + "_comb.hdf5", combined_locs, info)
示例6: _cluster_combine_dist
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _cluster_combine_dist(files):
import glob
paths = glob.glob(files)
if paths:
from . import io, postprocess
for path in paths:
try:
locs, info = io.load_locs(path)
except io.NoMetadataFileError:
continue
combinedist_locs = postprocess.cluster_combine_dist(locs)
base, ext = os.path.splitext(path)
cluster_combine_dist_info = {"Generated by": "Picasso Combineidst"}
info.append(cluster_combine_dist_info)
io.save_locs(base + "_cdist.hdf5", combinedist_locs, info)
示例7: _density
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _density(files, radius):
import glob
paths = glob.glob(files)
if paths:
from . import io, postprocess
for path in paths:
locs, info = io.load_locs(path)
locs = postprocess.compute_local_density(locs, info, radius)
base, ext = os.path.splitext(path)
density_info = {
"Generated by": "Picasso Density",
"Radius": radius,
}
info.append(density_info)
io.save_locs(base + "_density.hdf5", locs, info)
示例8: _dbscan
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _dbscan(files, radius, min_density):
import glob
paths = glob.glob(files)
if paths:
from . import io, postprocess
from h5py import File
for path in paths:
print("Loading {} ...".format(path))
locs, info = io.load_locs(path)
clusters, locs = postprocess.dbscan(locs, radius, min_density)
base, ext = os.path.splitext(path)
dbscan_info = {
"Generated by": "Picasso DBSCAN",
"Radius": radius,
"Minimum local density": min_density,
}
info.append(dbscan_info)
io.save_locs(base + "_dbscan.hdf5", locs, info)
with File(base + "_dbclusters.hdf5", "w") as clusters_file:
clusters_file.create_dataset("clusters", data=clusters)
print("Clustering executed. Results are saved in: \n" + base + "_dbscan.hdf5" +
"\n" + base + "_dbclusters.hdf5")
示例9: _hdbscan
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _hdbscan(files, min_cluster, min_samples):
import glob
paths = glob.glob(files)
if paths:
from . import io, postprocess
from h5py import File
for path in paths:
print("Loading {} ...".format(path))
locs, info = io.load_locs(path)
clusters, locs = postprocess.hdbscan(locs, min_cluster, min_samples)
base, ext = os.path.splitext(path)
hdbscan_info = {
"Generated by": "Picasso HDBSCAN",
"Min. cluster": min_cluster,
"Min. samples": min_samples,
}
info.append(hdbscan_info)
io.save_locs(base + "_hdbscan.hdf5", locs, info)
with File(base + "_hdbclusters.hdf5", "w") as clusters_file:
clusters_file.create_dataset("clusters", data=clusters)
print("Clustering executed. Results are saved in: \n" + base + "_hdbscan.hdf5" +
"\n" + base + "_hdbclusters.hdf5")
示例10: _nneighbor
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _nneighbor(files):
import glob
import h5py as _h5py
import numpy as np
from scipy.spatial import distance
paths = glob.glob(files)
if paths:
for path in paths:
print("Loading {} ...".format(path))
with _h5py.File(path, "r") as locs_file:
locs = locs_file["clusters"][...]
clusters = np.rec.array(locs, dtype=locs.dtype)
points = np.array(clusters[["com_x", "com_y"]].tolist())
alldist = distance.cdist(points, points)
alldist[alldist == 0] = float("inf")
minvals = np.amin(alldist, axis=0)
base, ext = os.path.splitext(path)
out_path = base + "_minval.txt"
np.savetxt(out_path, minvals, newline="\r\n")
print("Saved filest o: {}".format(out_path))
示例11: _groupprops
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _groupprops(files):
import glob
paths = glob.glob(files)
if paths:
from .io import load_locs, save_datasets
from .postprocess import groupprops
from os.path import splitext
for path in paths:
locs, info = load_locs(path)
groups = groupprops(locs)
base, ext = splitext(path)
save_datasets(
base + "_groupprops.hdf5", info, locs=locs, groups=groups
)
示例12: _pair_correlation
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def _pair_correlation(files, bin_size, r_max):
from glob import glob
paths = glob(files)
if paths:
from .io import load_locs
from .postprocess import pair_correlation
from matplotlib.pyplot import plot, style, show, xlabel, ylabel, title
style.use("ggplot")
for path in paths:
print("Loading {}...".format(path))
locs, info = load_locs(path)
print("Calculating pair-correlation...")
bins_lower, pc = pair_correlation(locs, info, bin_size, r_max)
plot(bins_lower - bin_size / 2, pc)
xlabel("r (pixel)")
ylabel("pair-correlation (pixel^-2)")
title(
"Pair-correlation. Bin size: {}, R max: {}".format(
bin_size, r_max
)
)
show()
示例13: load_test_data
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def load_test_data(FLAGS):
label_files = glob(os.path.join(FLAGS.test_data_local, '*.txt'))
test_data = np.ndarray((len(label_files), FLAGS.input_size, FLAGS.input_size, 3),
dtype=np.uint8)
img_names = []
test_labels = []
for index, file_path in enumerate(label_files):
with codecs.open(file_path, 'r', 'utf-8') as f:
line = f.readline()
line_split = line.strip().split(', ')
if len(line_split) != 2:
print('%s contain error lable' % os.path.basename(file_path))
continue
img_names.append(line_split[0])
test_data[index] = preprocess_img(os.path.join(FLAGS.test_data_local, line_split[0]), FLAGS.input_size)
test_labels.append(int(line_split[1]))
return img_names, test_data, test_labels
示例14: folder_contents_list
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def folder_contents_list(path):
'''returns a list of folder contents'''
folder_contents = glob.glob(os.path.join(path, '**'), recursive = True)
folder_contents = [x.replace('{}/'.format(path),'') for x in folder_contents ]
folder_contents = folder_contents[1:] ## the first element is the path name
return(folder_contents)
# In[7]:
示例15: get_latest_file
# 需要導入模塊: from glob import glob [as 別名]
# 或者: from glob.glob import glob [as 別名]
def get_latest_file(root_dir):
"""Returns path to latest file in a directory."""
list_of_files = glob.glob(os.path.join(root_dir, '*'))
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file