本文整理匯總了Python中geopandas.sjoin方法的典型用法代碼示例。如果您正苦於以下問題:Python geopandas.sjoin方法的具體用法?Python geopandas.sjoin怎麽用?Python geopandas.sjoin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類geopandas
的用法示例。
在下文中一共展示了geopandas.sjoin方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_df_extract
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def get_df_extract(df_data, poly_gdf, operation = "within"):
"""
Indexes input geo-data frame within an input region of interest
If the region of interest is given as a polygon, its bounding box is indexed
Parameters
----------
df_data : geopandas.GeoDataFrame
input data frame to index
poly_gdf : geopandas.GeoDataFrame
geodataframe containing the region of interest in form of polygon
operation : string
the desired spatial join operation: 'within' or 'intersects'
Returns
----------
geopandas.GeoDataFrame
returns the population data frame indexed within the region of interest
"""
# Project to same system coordinates
poly_gdf = ox.project_gdf(poly_gdf, to_crs=df_data.crs)
# Spatial join
df_extract = gpd.sjoin(df_data, poly_gdf, op=operation)
# Keep original columns
df_extract = df_extract[ df_data.columns ]
return df_extract
示例2: population_downscaling_validation
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def population_downscaling_validation(df_osm_built, df_insee):
"""
Validates the population downscaling estimation by means of aggregating the sum of buildings estimated population lying within each population square
Allows to compare the real population count with the estimated population lying within each square
Updates new column 'pop_estimation' for each square in the population data frame
Parameters
----------
df_osm_built : geopandas.GeoDataFrame
input buildings with computed population count
df_insee : geopandas.GeoDataFrame
INSEE population data
Returns
----------
"""
df_osm_built['geom'] = df_osm_built.geometry
df_osm_built_residential = df_osm_built[ df_osm_built.apply(lambda x: x.landuses_m2['residential'] > 0, axis = 1) ]
df_insee.crs = df_osm_built_residential.crs
# Intersecting gridded population - buildings
sjoin = gpd.sjoin( df_insee, df_osm_built_residential, op='intersects')
# Calculate area within square (percentage of building with the square)
sjoin['pop_estimation'] = sjoin.apply(lambda x: x.population * (x.geom.intersection(x.geometry).area / x.geom.area), axis=1 )
# Initialize
df_insee['pop_estimation'] = np.nan
sum_pop_per_square = sjoin.groupby(sjoin.index)['pop_estimation'].sum()
df_insee.loc[ sum_pop_per_square.index, "pop_estimation" ] = sum_pop_per_square.values
# Drop unnecessary column
df_osm_built.drop('geom', axis=1, inplace=True)
# Set to 0 nan values
df_insee.loc[ df_insee.pop_estimation.isnull(), "pop_estimation" ] = 0
# Compute absolute and relative error
df_insee["absolute_error"] = df_insee.apply(lambda x: abs(x.pop_count - x.pop_estimation), axis=1)
df_insee["relative_error"] = df_insee.apply(lambda x: abs(x.pop_count - x.pop_estimation) / x.pop_count, axis=1)
示例3: test_spatial_join
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def test_spatial_join(self):
cities = geopandas.read_file(geopandas.datasets.get_path('naturalearth_cities'))
world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
countries = world[['geometry', 'name']]
countries = countries.rename(columns={'name':'country'})
cities_with_country = geopandas.sjoin(cities, countries, how="inner", op='intersects')
self.assertTrue(cities_with_country.size > 1)
示例4: _remove_outside_aoi
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def _remove_outside_aoi(aoi_gdf, inventory_df):
'''Removes scenes that are located outside the AOI
The search routine works over a simplified representation of the AOI.
This may then include acquistions that do not overlap with the AOI.
In this step we sort out the scenes that are completely outside the
actual AOI.
Args:
aoi_gdf (gdf): the aoi as an GeoDataFrame
inventory_df (gdf): an OST compliant Sentinel-1 inventory GeoDataFrame
Returns:
inventory_df (gdf): the manipulated inventory GeodataFrame
'''
# get columns of input dataframe for later return function
cols = inventory_df.columns
# 1) get only intersecting footprints (double, since we do this before)
inventory_df = gpd.sjoin(inventory_df, aoi_gdf,
how='inner', op='intersects')
# if aoi gdf has an id field we need to rename the changed id_left field
if 'id_left' in inventory_df.columns.tolist():
# rename id_left to id
inventory_df.columns = [
'id' if x == 'id_left' else x
for x in inventory_df.columns.tolist()]
return inventory_df[cols]
示例5: _spatial_join_community_index
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def _spatial_join_community_index(self, dataframe, shapefile='data/chicago_boundaries/chicago_boundaries.shp',
spatial_index='community', projection='epsg:4326'):
"""
Join the dataframe with location data from shapefile.
Args:
dataframe: pandas dataframe with unique id.
shapefile: shapefile containing geometry.
spatial_index: column names of aggregation area in shapefile.
projection: defaults to 'epsg:4326'
Returns: dataframe.
Raises:
ShapefileNotFoundException: Shapefile not found.
SpatialIndexNotMatchedException: spatial_index not found in shapefile.
"""
geometry = [Point(xy) for xy in zip(dataframe['lon'], dataframe['lat'])]
crs = {'init': projection}
geo_original = gpd.GeoDataFrame(dataframe, crs=crs, geometry=geometry)
try:
boundaries_gdf = gpd.read_file(shapefile)
except FileNotFoundError:
raise ShapefileNotFoundException('shapefile not found: {}'.format(shapefile))
geo_result = gpd.sjoin(boundaries_gdf, geo_original, how='right',
op='intersects')
dataframe_columns = list(dataframe.columns)
geo_result.rename(columns={spatial_index: 'spatial_index'}, inplace=True)
dataframe_columns.append('spatial_index')
dataframe_columns.append('geometry')
try:
geo_result = geo_result[dataframe_columns]
except KeyError:
raise SpatialIndexNotMatchedException('Unable to match spatial_index:{}'.format(spatial_index))
if len(geo_result) != len(dataframe):
self.logger.warning('Length of joined dataframe ({}) != length of input dataframe ({})'
.format(len(geo_result), len(dataframe)))
return geo_result
示例6: proportional_population_downscaling
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def proportional_population_downscaling(df_osm_built, df_insee):
"""
Performs a proportional population downscaling considering the surface dedicated to residential land use
Associates the estimated population to each building in column 'population'
Parameters
----------
df_osm_built : geopandas.GeoDataFrame
input buildings with computed residential surface
df_insee : geopandas.GeoDataFrame
INSEE population data
Returns
----------
"""
if (df_insee.crs != df_osm_built.crs): # If projections do not match
# First project to Lat-Long coordinates, then project to UTM coordinates
df_insee = ox.project_gdf( ox.project_gdf(df_insee, to_latlong=True) )
# OSM Building geometries are already projected
assert(df_insee.crs == df_osm_built.crs)
df_osm_built['geom'] = df_osm_built.geometry
df_osm_built_residential = df_osm_built[ df_osm_built.apply(lambda x: x.landuses_m2['residential'] > 0, axis = 1) ]
# Loading/saving using geopandas loses the 'ellps' key
df_insee.crs = df_osm_built_residential.crs
# Intersecting gridded population - buildings
sjoin = gpd.sjoin( df_insee, df_osm_built_residential, op='intersects')
# Calculate area within square (percentage of building with the square)
sjoin['residential_m2_within'] = sjoin.apply(lambda x: x.landuses_m2['residential'] * (x.geom.intersection(x.geometry).area / x.geom.area), axis=1 )
# Initialize
df_insee['residential_m2_within'] = 0
# Sum residential area within square
sum_m2_per_square = sjoin.groupby(sjoin.index)['residential_m2_within'].sum()
# Assign total residential area within each square
df_insee.loc[ sum_m2_per_square.index, "residential_m2_within" ] = sum_m2_per_square.values
# Get number of M^2 / person
df_insee[ "m2_per_person" ] = df_insee.apply(lambda x: x.residential_m2_within / x.pop_count, axis=1)
def population_building(x, df_insee):
# Sum of: For each square: M2 of building within square / M2 per person
return ( x.get('m2',[]) / df_insee.loc[ x.get('idx',[]) ].m2_per_person ).sum()
# Index: Buildings , Values: idx:Indices of gridded square population, m2: M2 within that square
buildings_square_m2_association = sjoin.groupby('index_right').apply(lambda x: {'idx':list(x.index), 'm2':list(x.residential_m2_within)} )
# Associate
df_osm_built.loc[ buildings_square_m2_association.index, "population" ] = buildings_square_m2_association.apply(lambda x: population_building(x,df_insee) )
# Drop unnecessary column
df_osm_built.drop('geom', axis=1, inplace=True)
示例7: get_population_df_filled_empty_squares
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def get_population_df_filled_empty_squares(df_insee):
"""
Add empty squares as 0-population box-squares
Parameters
----------
df_insee : geopandas.GeoDataFrame
INSEE population data
Returns
----------
"""
def get_northing_easting(x): # Extract northing and easting coordinates
north, east = x.idINSPIRE.split("N")[1].split("E")
x["north"] = int(north)
x["east"] = int(east)
return x
# Project data to its original projection coordinates
df_insee_3035 = ox.project_gdf(df_insee, to_crs="+init=epsg:3035")
# Get northing and easting coordinates
coordinates = df_insee.apply(lambda x: get_northing_easting(x), axis=1 )[["north","east"]]
# +100 meters to obtain the centroid of each box
coords_offset = 100
# Input data step
step = 200.
# North, east coordinates denote the south-west box endpoint:
north_min, north_max = coordinates.north.min() + coords_offset, coordinates.north.max() + coords_offset
east_min, east_max = coordinates.east.min() + coords_offset, coordinates.east.max() + coords_offset
# Create mesh grid: One point for each square's centroid: Each square has an extent of 1km by 1km
xv, yv = np.meshgrid( np.arange(east_min, east_max, step), np.arange(north_min, north_max, step) )
# For every given coordinate, if a box is not created (no population), make it with an initial population of 0
empty_population_box = []
for E, N in zip( xv.ravel(), yv.ravel() ): # Center-point
point_df = gpd.GeoDataFrame( [Point(E,N)], columns=[ "geometry" ], crs="+init=epsg:3035" )
if ( gpd.sjoin( point_df, df_insee_3035 ).empty ): # Does not intersect any existing square-box
# Create new square
empty_population_box.append( Polygon([ (E - 100., N - 100.), (E - 100., N + 100. ), (E + 100., N + 100. ), (E + 100., N - 100. ), (E - 100., N - 100. ) ]) )
# Concatenate original data frame + Empty squares
gdf_concat = pd.concat( [df_insee_3035, gpd.GeoDataFrame( {'geometry':empty_population_box, 'pop_count':[0]*len(empty_population_box) }, crs="+init=epsg:3035" ) ], ignore_index=True, sort=False )
# Remove added grid-cells outside the convex hull of the population data frame
df_insee_convex_hull_3035 = df_insee_3035.unary_union.convex_hull
gdf_concat = gdf_concat[ gdf_concat.apply(lambda x: df_insee_convex_hull_3035.intersects(x.geometry), axis=1 ) ]
gdf_concat.reset_index(drop=True, inplace=True)
# Project (First project to latitude-longitude due to GeoPandas issue)
return ox.project_gdf( ox.project_gdf(gdf_concat, to_latlong=True) )
示例8: compute_landuse_inference
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def compute_landuse_inference(df_buildings, df_landuse):
"""
Compute land use inference for building polygons with no information
The inference is done using polygons with defined land use
A building polygon's land use is inferred by means of adopting the land use of the smallest encompassing polygon with defined land use
Parameters
----------
df_buildings : geopandas.GeoDataFrame
input buildings
df_landuse : geopandas.GeoDataFrame
land use polygons to aid inference procedure
Returns
----------
"""
# Get those indices which need to be inferred, and keep geometry column only
df_buildings_to_infer = df_buildings.loc[ df_buildings['classification'] == 'infer', ["geometry"] ]
# Add land use polygon's area
df_landuse['area'] = df_landuse.apply(lambda x: x.geometry.area, axis=1)
# Get geometries to infer within Land use polygons matching
sjoin = gpd.sjoin(df_buildings_to_infer, df_landuse, op='within')
# Add index column to sort values
sjoin['index'] = sjoin.index
# Sort values by index, then by area
sjoin.sort_values(by=['index','area'], inplace=True)
# Drop duplicates. Keep first (minimum computing area)
sjoin.drop_duplicates(subset=['index'], keep='first', inplace=True)
##### Set key:value and classification
# Set default value: inferred:None
df_buildings.loc[ df_buildings_to_infer.index, "key_value" ] = df_buildings.loc[ df_buildings_to_infer.index].apply(lambda x: {"inferred":None} , axis=1)
# Set land use for those buildings within a defined land use polygon
df_buildings.loc[ sjoin.index, "key_value" ] = sjoin.apply(lambda x: {'inferred':x.landuse}, axis=1)
# Set classification
df_buildings.loc[ df_buildings_to_infer.index, "classification" ] = df_buildings.loc[ df_buildings_to_infer.index, "key_value" ].apply(lambda x: classify_landuse_inference(x.get("inferred")) )
# Remove useless rows
df_buildings.drop( df_buildings[ df_buildings.classification.isin([None,"other"]) ].index, inplace=True)
df_buildings.reset_index(inplace=True,drop=True)
assert( len( df_buildings[df_buildings.classification.isnull()] ) == 0 )
############################################
### Activity type classification
############################################
示例9: lyr_from_shape
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def lyr_from_shape(self, lyr_name, input_shp, field_attribute,
output_shp=None):
"""
Create a model input layer at mesh element coordinates.
For example, input_shp is a roughness map containing polygons with
roughness values. A spatial join is performed for mesh element points
within input_shp polygons and returns field_attributeat element points.
Parameters
----------
lyr_name : str
Layer name as key to `lyrs` attribute dictionary
input_shp : str
Path to input shape file
field_attributes : str
Attribute in `input_shp` to extract at mesh elements
output_shp : str, optional
output path to write to .shp file
Returns
-------
Inserts `lyr_name` into the `lyrs` attribute dictionary as an ndarray,
shape (num_elements,) with extracted `field_attributes` value for each
mesh element
"""
# Load input_shp to GeoDF
input_df = gpd.read_file(input_shp)
# Load mesh element points as GeoDF
mesh_df = self.to_gpd()
# Perform spatial join
join_df = gpd.sjoin(mesh_df, input_df, how='left', op='within')
# Drop duplicated points; there is the potential to have duplicated
# points when they intersect two different polygons. Keep the first
join_df = join_df[~join_df.index.duplicated(keep='first')]
self.lyrs[lyr_name] = np.array(join_df[field_attribute])
if output_shp is not None:
join_df.to_file(output_shp)
示例10: label_hydro_region
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def label_hydro_region(gens_860, pudl_engine, model_regions_gdf):
"""
Label hydro facilities that don't have a region by default.
Parameters
----------
gens_860 : dataframe
Infomation on all generators from PUDL
pudl_engine : sqlalchemy.Engine
A sqlalchemy connection for use by pandas
model_regions_gdf : dataframe
Geodataframe of the model regions
Returns
-------
dataframe
Plant id and region for any hydro that didn't originally have a region label.
"""
plant_entity = pd.read_sql_table("plants_entity_eia", pudl_engine)
model_hydro = gens_860.loc[
gens_860["technology_description"] == "Conventional Hydroelectric"
].merge(plant_entity[["plant_id_eia", "latitude", "longitude"]], on="plant_id_eia")
no_lat_lon = model_hydro.loc[
(model_hydro["latitude"].isnull()) | (model_hydro["longitude"].isnull()), :
]
if not no_lat_lon.empty:
print(no_lat_lon["summer_capacity_mw"].sum(), " MW without lat/lon")
model_hydro = model_hydro.dropna(subset=["latitude", "longitude"])
# Convert the lon/lat values to geo points. Need to add an initial CRS and then
# change it to align with the IPM regions
model_hydro_gdf = gpd.GeoDataFrame(
model_hydro,
geometry=gpd.points_from_xy(model_hydro.longitude, model_hydro.latitude),
crs={"init": "epsg:4326"},
)
if model_hydro_gdf.crs != model_regions_gdf.crs:
model_hydro_gdf = model_hydro_gdf.to_crs(model_regions_gdf.crs)
model_hydro_gdf = gpd.sjoin(model_regions_gdf, model_hydro_gdf)
model_hydro_gdf = model_hydro_gdf.rename(columns={"IPM_Region": "region"})
keep_cols = ["plant_id_eia", "region"]
return model_hydro_gdf.loc[:, keep_cols]
示例11: refine_burst_inventory
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def refine_burst_inventory(aoi, burst_gdf, outfile, coverages=None):
'''Creates a Burst GeoDataFrame from an OST inventory file
Args:
Returns:
'''
# turn aoi into a geodataframe
aoi_gdf = gpd.GeoDataFrame(vec.wkt_to_gdf(aoi).buffer(0.05))
aoi_gdf.columns = ['geometry']
# get columns of input dataframe for later return function
cols = burst_gdf.columns
# 1) get only intersecting footprints (double, since we do this before)
burst_gdf = gpd.sjoin(burst_gdf, aoi_gdf, how='inner', op='intersects')
# if aoi gdf has an id field we need to rename the changed id_left field
if 'id_left' in burst_gdf.columns.tolist():
# rename id_left to id
burst_gdf.columns = (['id' if x == 'id_left' else x
for x in burst_gdf.columns.tolist()])
# remove duplicates
burst_gdf.drop_duplicates(['SceneID', 'Date', 'bid'], inplace=True)
# check if number of bursts align with number of coverages
if coverages:
for burst in burst_gdf.bid.unique():
if len(burst_gdf[burst_gdf.bid == burst]) != coverages:
print(' INFO. Removing burst {} because of'
' unsuffcient coverage.'.format(burst))
burst_gdf.drop(burst_gdf[burst_gdf.bid == burst].index,
inplace=True)
# save file to out
burst_gdf['Date'] = burst_gdf['Date'].astype(str)
burst_gdf['BurstNr'] = burst_gdf['BurstNr'].astype(str)
burst_gdf['AnxTime'] = burst_gdf['AnxTime'].astype(str)
burst_gdf['Track'] = burst_gdf['Track'].astype(str)
burst_gdf.to_file(outfile)
return burst_gdf[cols]
示例12: extract_tile_items
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import sjoin [as 別名]
def extract_tile_items(
raster_features, labels, min_x, min_y, tile_width, tile_height
):
"""Extract label items that belong to the tile defined by the minimum
horizontal pixel `min_x` (left tile limit), the minimum vertical pixel
`min_y` (upper tile limit) and the sizes ̀tile_width` and `tile_height`
measured as a pixel amount.
The tile is cropped from the original image raster as follows:
- horizontally, between `min_x` and `min_x+tile_width`
- vertically, between `min_y` and `min_y+tile_height`
This method takes care of original data projection (UTM 37S, Tanzania
area), however this parameter may be changed if similar data on another
projection is used.
Parameters
----------
raster_features : dict
Raw image raster geographical features (`north`, `south`, `east` and
`west` coordinates, `weight` and `height` measured in pixels)
labels : geopandas.GeoDataFrame
Raw image labels, as a set of geometries
min_x : int
Left tile limit, as a horizontal pixel index
min_y : int
Upper tile limit, as a vertical pixel index
tile_width : int
Tile width, measured in pixel
tile_height : int
Tile height, measured in pixel
Returns
-------
geopandas.GeoDataFrame
Set of ground-truth labels contained into the tile, characterized by
their type (complete, unfinished or foundation) and their geometry
"""
area = get_tile_footprint(
raster_features, min_x, min_y, tile_width, tile_height
)
bdf = gpd.GeoDataFrame(
crs=from_epsg(raster_features["srid"]), geometry=[area]
)
reproj_labels = labels.to_crs(epsg=raster_features["srid"])
tile_items = gpd.sjoin(reproj_labels, bdf)
if tile_items.shape[0] == 0:
return tile_items[["condition", "geometry"]]
tile_items = gpd.overlay(tile_items, bdf)
tile_items = tile_items.explode() # Manage MultiPolygons
return tile_items[["condition", "geometry"]]