本文整理匯總了Python中geopandas.read_file方法的典型用法代碼示例。如果您正苦於以下問題:Python geopandas.read_file方法的具體用法?Python geopandas.read_file怎麽用?Python geopandas.read_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類geopandas
的用法示例。
在下文中一共展示了geopandas.read_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_inventory
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def load_inventory(inventoryJSON):
"""Load inventory saved with asf.archive.save_inventory().
Parameters
----------
inventoryJSON : str
dinsar inventory file (query.geojson)
Returns
-------
gf : GeoDataFrame
A geopandas GeoDataFrame
"""
gf = gpd.read_file(inventoryJSON)
gf["timeStamp"] = pd.to_datetime(gf.sceneDate, format="%Y-%m-%d %H:%M:%S")
gf["sceneDateString"] = gf.timeStamp.apply(lambda x: x.strftime("%Y-%m-%d"))
gf["dateStamp"] = pd.to_datetime(gf.sceneDateString)
gf["utc"] = gf.timeStamp.apply(lambda x: x.strftime("%H:%M:%S"))
gf["relativeOrbit"] = gf.relativeOrbit.astype("int")
gf.sort_values("relativeOrbit", inplace=True)
gf["orbitCode"] = gf.relativeOrbit.astype("category").cat.codes
return gf
示例2: ogr2snwe
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def ogr2snwe(vectorFile, buffer=None):
"""Convert ogr shape to South,North,West,East bounds.
Parameters
----------
vectorFile : str
path to OGR-recognized vector file.
buffer : float
Amount of buffer distance to add to shape (in decimal degrees).
Returns
-------
snwe : list
a list of coorinate bounds [S, N, W, E]
"""
gf = gpd.read_file(vectorFile)
gf.to_crs(epsg=4326, inplace=True)
poly = gf.geometry.convex_hull
if buffer:
poly = poly.buffer(buffer)
W, S, E, N = poly.bounds.values[0]
snwe = [S, N, W, E]
return snwe
示例3: setup_method
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def setup_method(self):
test_file_path = mm.datasets.get_path("bubenec")
self.df_buildings = gpd.read_file(test_file_path, layer="buildings")
self.df_streets = gpd.read_file(test_file_path, layer="streets")
self.df_tessellation = gpd.read_file(test_file_path, layer="tessellation")
self.df_streets["nID"] = mm.unique_id(self.df_streets)
self.df_buildings["height"] = np.linspace(10.0, 30.0, 144)
self.df_tessellation["area"] = self.df_tessellation.geometry.area
self.df_buildings["area"] = self.df_buildings.geometry.area
self.df_buildings["fl_area"] = mm.FloorArea(self.df_buildings, "height").series
self.df_buildings["nID"] = mm.get_network_id(
self.df_buildings, self.df_streets, "nID"
)
blocks = mm.Blocks(
self.df_tessellation, self.df_streets, self.df_buildings, "bID", "uID"
)
self.blocks = blocks.blocks
self.df_buildings["bID"] = blocks.buildings_id
self.df_tessellation["bID"] = blocks.tessellation_id
示例4: test_network_false_nodes
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def test_network_false_nodes(self):
test_file_path2 = mm.datasets.get_path("tests")
self.false_network = gpd.read_file(test_file_path2, layer="network")
fixed = mm.network_false_nodes(self.false_network)
assert len(fixed) == 55
assert isinstance(fixed, gpd.GeoDataFrame)
assert self.false_network.crs.equals(fixed.crs)
fixed_series = mm.network_false_nodes(self.false_network.geometry)
assert len(fixed_series) == 55
assert isinstance(fixed_series, gpd.GeoSeries)
assert self.false_network.crs.equals(fixed_series.crs)
with pytest.raises(TypeError):
mm.network_false_nodes(list())
multiindex = self.false_network.explode()
fixed_multiindex = mm.network_false_nodes(multiindex)
assert len(fixed_multiindex) == 55
assert isinstance(fixed, gpd.GeoDataFrame)
示例5: _read_shapefile_from_path
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def _read_shapefile_from_path(cls, fp):
if '.shp' not in fp:
raise ValueError('File ending not that of a shapefile')
if cfg.PARAMS['use_tar_shapefiles']:
fp = 'tar://' + fp.replace('.shp', '.tar')
if cfg.PARAMS['use_compression']:
fp += '.gz'
shp = gpd.read_file(fp)
# .properties file is created for compressed shapefiles. github: #904
_properties = fp.replace('tar://', '') + '.properties'
if os.path.isfile(_properties):
# remove it, to keep GDir slim
os.remove(_properties)
return shp
示例6: inversion_gdir
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def inversion_gdir(class_case_dir):
from oggm import GlacierDirectory
from oggm.tasks import define_glacier_region
import geopandas as gpd
# Init
cfg.initialize()
cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))
cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
hef_file = get_demo_file('Hintereisferner_RGI5.shp')
entity = gpd.read_file(hef_file).iloc[0]
gdir = GlacierDirectory(entity, base_dir=class_case_dir, reset=True)
define_glacier_region(gdir)
return gdir
示例7: get_thermal_network_from_shapefile
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def get_thermal_network_from_shapefile(locator, network_type, network_name):
"""
This function reads the existing node and pipe network from a shapefile and produces an edge-node incidence matrix
(as defined by Oppelt et al., 2016) as well as the edge properties (length, start node, and end node) and node
coordinates.
"""
# import shapefiles containing the network's edges and nodes
network_edges_df = gpd.read_file(locator.get_network_layout_edges_shapefile(network_type, network_name))
network_nodes_df = gpd.read_file(locator.get_network_layout_nodes_shapefile(network_type, network_name))
# check duplicated NODE/PIPE IDs
duplicated_nodes = network_nodes_df[network_nodes_df.Name.duplicated(keep=False)]
duplicated_edges = network_edges_df[network_edges_df.Name.duplicated(keep=False)]
if duplicated_nodes.size > 0:
raise ValueError('There are duplicated NODE IDs:', duplicated_nodes)
if duplicated_edges.size > 0:
raise ValueError('There are duplicated PIPE IDs:', duplicated_nodes)
# get node and pipe information
node_df, edge_df = extract_network_from_shapefile(network_edges_df, network_nodes_df)
return edge_df, node_df
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:25,代碼來源:simplified_thermal_network.py
示例8: read
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def read(self, epsg=None, **kwargs):
"""
Read vector data from Girder
:param format: Format to return data in (default is GeoDataFrame)
:param epsg: EPSG code to reproject data to
:return: Data in GeoJSON
"""
if self.data is None:
self.save_geojson()
self.data = geopandas.read_file(self.uri)
if self.filters:
self.filter_data()
out_data = self.data
if epsg and self.get_epsg() != epsg:
out_data = geopandas.GeoDataFrame.copy(out_data)
out_data[out_data.geometry.name] = \
self.data.geometry.to_crs(epsg=epsg)
out_data.crs = fiona.crs.from_epsg(epsg)
if format == formats.JSON:
return out_data.to_json()
else:
return out_data
示例9: test_classification
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def test_classification(self):
training_pt = gpd.read_file(nc.points)
df_points = self.stack_nc.extract_vector(gdf=training_pt)
df_points["class_id"] = training_pt["id"]
df_points = df_points.dropna()
clf = RandomForestClassifier(n_estimators=50)
X = df_points.drop(columns=["id", "class_id", "geometry"])
y = df_points.class_id
clf.fit(X, y)
# classification
cla = self.stack_nc.predict(estimator=clf, dtype="int16", nodata=0)
self.assertIsInstance(cla, Raster)
self.assertEqual(cla.count, 1)
self.assertEqual(cla.read(masked=True).count(), 135092)
# class probabilities
probs = self.stack_nc.predict_proba(estimator=clf)
self.assertIsInstance(cla, Raster)
self.assertEqual(probs.count, 7)
for _, layer in probs:
self.assertEqual(layer.read(masked=True).count(), 135092)
示例10: test_regression
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def test_regression(self):
training_pt = gpd.read_file(ms.meuse)
training = self.stack_meuse.extract_vector(gdf=training_pt)
training["zinc"] = training_pt["zinc"]
training["cadmium"] = training_pt["cadmium"]
training["copper"] = training_pt["copper"]
training["lead"] = training_pt["lead"]
training = training.dropna()
# single target regression
regr = RandomForestRegressor(n_estimators=50)
X = training.loc[:, self.stack_meuse.names]
y = training["zinc"]
regr.fit(X, y)
single_regr = self.stack_meuse.predict(regr)
self.assertIsInstance(single_regr, Raster)
self.assertEqual(single_regr.count, 1)
# multi-target regression
y = training.loc[:, ["zinc", "cadmium", "copper", "lead"]]
regr.fit(X, y)
multi_regr = self.stack_meuse.predict(regr)
self.assertIsInstance(multi_regr, Raster)
self.assertEqual(multi_regr.count, 4)
示例11: test_extract_points
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def test_extract_points(self):
training_pt = geopandas.read_file(nc.points)
# check that extracted training data as array match known values
ids, X, xys = self.stack.extract_vector(gdf=training_pt, return_array=True)
self.assertTrue((X[~X[:, 0].mask, 0].data == training_pt["b1"].dropna().values).all())
self.assertTrue((X[~X[:, 1].mask, 1].data == training_pt["b2"].dropna().values).all())
self.assertTrue((X[~X[:, 2].mask, 2].data == training_pt["b3"].dropna().values).all())
self.assertTrue((X[~X[:, 3].mask, 3].data == training_pt["b4"].dropna().values).all())
self.assertTrue((X[~X[:, 4].mask, 4].data == training_pt["b5"].dropna().values).all())
self.assertTrue((X[~X[:, 5].mask, 5].data == training_pt["b7"].dropna().values).all())
# check that extracted training data as a DataFrame match known values
df = self.stack.extract_vector(gdf=training_pt)
self.assertTrue(df["lsat7_2000_10"].equals(training_pt["b1"]))
self.assertTrue(df["lsat7_2000_20"].equals(training_pt["b2"]))
self.assertTrue(df["lsat7_2000_30"].equals(training_pt["b3"]))
self.assertTrue(df["lsat7_2000_40"].equals(training_pt["b4"]))
self.assertTrue(df["lsat7_2000_50"].equals(training_pt["b5"]))
self.assertTrue(df["lsat7_2000_70"].equals(training_pt["b7"]))
示例12: test_extract_polygons
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def test_extract_polygons(self):
# extract training data from polygons
training_py = geopandas.read_file(nc.polygons)
df = self.stack.extract_vector(gdf=training_py)
df = df.dropna()
df = (
df.merge(training_py.loc[:, ("id", "label")], left_on="id", right_index=True).
drop(columns=["id_x"])
)
# compare to extracted data using GRASS GIS
self.assertEqual(df.shape[0], self.extracted_grass.shape[0])
self.assertAlmostEqual(df["lsat7_2000_10"].mean(), self.extracted_grass["b1"].mean(), places=3)
self.assertAlmostEqual(df["lsat7_2000_20"].mean(), self.extracted_grass["b2"].mean(), places=3)
self.assertAlmostEqual(df["lsat7_2000_30"].mean(), self.extracted_grass["b3"].mean(), places=3)
self.assertAlmostEqual(df["lsat7_2000_40"].mean(), self.extracted_grass["b4"].mean(), places=3)
self.assertAlmostEqual(df["lsat7_2000_50"].mean(), self.extracted_grass["b5"].mean(), places=3)
self.assertAlmostEqual(df["lsat7_2000_70"].mean(), self.extracted_grass["b7"].mean(), places=3)
示例13: __load_country_shapes__
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def __load_country_shapes__():
'''Load country shapes'''
logger.info('Loading country shapes')
# load shapefile for country shapes and get records
world = geopandas.read_file(
geopandas.datasets.get_path('naturalearth_lowres'))
for _, country in world.iterrows():
# Try to find the alpha 3 country code in the iso3166.
# Sometimes it is not set ( value '-99'). Then we try to match by name.
country_codes = iso3166.countries_by_alpha3.get(
country['iso_a3'],
iso3166.countries_by_name.get(country['name'].upper())
)
# log warning if the country is not found.
if not country_codes:
logger.warning('Unable to find %s', country['name'])
continue
# Save geometry as wkt string with both alpha 2 and 3 code as key.
shape = country['geometry']
__country_shapes__[country_codes.alpha2] = shape
__country_shapes__[country_codes.alpha3] = shape
示例14: vcount
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def vcount(shpfile):
df = gp.read_file(shpfile)
if not df.size==0:
for i, row in df.iterrows():
# It's better to check if multigeometry
multi = row.geometry.type.startswith("Multi")
if multi:
n = 0
# iterate over all parts of multigeometry
for part in row.geometry:
n += len(part.exterior.coords)
else: # if single geometry like point, linestring or polygon
n = len(row.geometry.exterior.coords)
#print('Total vertices: {:,}'.format(n))
overall.append(n)
if all(i < 1000000 for i in overall)==True:
return sum(overall)
else:
logger.warning(shpfile+' has overall max vertex of '+str(max(overall))+' with max allowed 1000000 ingest might fail')
return sum(overall)
#print('Total vertices per feature exceeded max. Overall vertices: {}'.format(sum(overall)))
#return sum(overall)
else:
return df.size
示例15: transects_from_geojson
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import read_file [as 別名]
def transects_from_geojson(filename):
"""
Reads transect coordinates from a .geojson file.
Arguments:
-----------
filename: str
contains the path and filename of the geojson file to be loaded
Returns:
-----------
transects: dict
contains the X and Y coordinates of each transect
"""
gdf = gpd.read_file(filename)
transects = dict([])
for i in gdf.index:
transects[gdf.loc[i,'name']] = np.array(gdf.loc[i,'geometry'].coords)
print('%d transects have been loaded' % len(transects.keys()))
return transects