本文整理匯總了Python中geopandas.overlay方法的典型用法代碼示例。如果您正苦於以下問題:Python geopandas.overlay方法的具體用法?Python geopandas.overlay怎麽用?Python geopandas.overlay使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類geopandas
的用法示例。
在下文中一共展示了geopandas.overlay方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calc_surrounding_area
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import overlay [as 別名]
def calc_surrounding_area(zone_gdf, buffer_m):
geometry_without_holes = zone_gdf.convex_hull
geometry_without_holes_gdf = Gdf(geometry=geometry_without_holes.values)
geometry_without_holes_gdf["one_class"] = "buildings"
geometry_merged = geometry_without_holes_gdf.dissolve(by='one_class', aggfunc='sum')
geometry_merged_final = Gdf(geometry=geometry_merged.convex_hull)
new_buffer = Gdf(geometry=geometry_merged_final.buffer(buffer_m))
area = overlay(geometry_merged_final, new_buffer, how='symmetric_difference')
# THIS IS ANOTHER METHOD, NOT FUNCTIONAL THOUGH
# from shapely.ops import Point
# # new GeoDataFrame with same columns
# points = []
# # Extraction of the polygon nodes and attributes values from polys and integration into the new GeoDataFrame
# for index, row in zone_gdf.iterrows():
# for j in list(row['geometry'].exterior.coords):
# points.append(Point(j))
#
# concave_hull, edge_points = alpha_shape(points, alpha=0.1)
# simple_polygons = [x for x in concave_hull]
# geometry_merged_final = Gdf(geometry=simple_polygons)
# geometry_merged_final.plot()
# plt.show()
# new_buffer = Gdf(geometry=geometry_merged_final.buffer(buffer_m))
# area = overlay(geometry_merged_final, new_buffer, how='symmetric_difference')
# area.plot()
return area, geometry_merged_final
示例2: difference
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import overlay [as 別名]
def difference(infile1, infile2, outfile):
gdf1 = gpd.read_file(infile1)
gdf2 = gpd.read_file(infile2)
gdf3 = gpd.overlay(gdf1, gdf2, how='symmetric_difference')
gdf3.to_file(outfile)
示例3: extract_tile_items
# 需要導入模塊: import geopandas [as 別名]
# 或者: from geopandas import overlay [as 別名]
def extract_tile_items(
raster_features, labels, min_x, min_y, tile_width, tile_height
):
"""Extract label items that belong to the tile defined by the minimum
horizontal pixel `min_x` (left tile limit), the minimum vertical pixel
`min_y` (upper tile limit) and the sizes ̀tile_width` and `tile_height`
measured as a pixel amount.
The tile is cropped from the original image raster as follows:
- horizontally, between `min_x` and `min_x+tile_width`
- vertically, between `min_y` and `min_y+tile_height`
This method takes care of original data projection (UTM 37S, Tanzania
area), however this parameter may be changed if similar data on another
projection is used.
Parameters
----------
raster_features : dict
Raw image raster geographical features (`north`, `south`, `east` and
`west` coordinates, `weight` and `height` measured in pixels)
labels : geopandas.GeoDataFrame
Raw image labels, as a set of geometries
min_x : int
Left tile limit, as a horizontal pixel index
min_y : int
Upper tile limit, as a vertical pixel index
tile_width : int
Tile width, measured in pixel
tile_height : int
Tile height, measured in pixel
Returns
-------
geopandas.GeoDataFrame
Set of ground-truth labels contained into the tile, characterized by
their type (complete, unfinished or foundation) and their geometry
"""
area = get_tile_footprint(
raster_features, min_x, min_y, tile_width, tile_height
)
bdf = gpd.GeoDataFrame(
crs=from_epsg(raster_features["srid"]), geometry=[area]
)
reproj_labels = labels.to_crs(epsg=raster_features["srid"])
tile_items = gpd.sjoin(reproj_labels, bdf)
if tile_items.shape[0] == 0:
return tile_items[["condition", "geometry"]]
tile_items = gpd.overlay(tile_items, bdf)
tile_items = tile_items.explode() # Manage MultiPolygons
return tile_items[["condition", "geometry"]]