本文整理匯總了Python中gensim.models.word2vec.Word2Vec.load方法的典型用法代碼示例。如果您正苦於以下問題:Python Word2Vec.load方法的具體用法?Python Word2Vec.load怎麽用?Python Word2Vec.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gensim.models.word2vec.Word2Vec
的用法示例。
在下文中一共展示了Word2Vec.load方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_last
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def load_last(self, save_dir):
'''Load last model from dir
'''
def extract_number_of_epochs(filename):
m = re.search('_ne([0-9]+(\.[0-9]+)?)_', filename)
return float(m.group(1))
# Get all the models for this RNN
file = save_dir + self._get_model_filename("*")
file = np.array(glob.glob(file))
if len(file) == 0:
print('No previous model, starting from scratch')
return 0
# Find last model and load it
last_batch = np.amax(np.array(map(extract_number_of_epochs, file)))
last_model = save_dir + self._get_model_filename(last_batch)
print('Starting from model ' + last_model)
self.load(last_model)
return last_batch
示例2: generate_block_seqs
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def generate_block_seqs(self):
if self.language is 'c':
from prepare_data import get_blocks as func
else:
from utils import get_blocks_v1 as func
from gensim.models.word2vec import Word2Vec
word2vec = Word2Vec.load(self.root+self.language+'/train/embedding/node_w2v_' + str(self.size)).wv
vocab = word2vec.vocab
max_token = word2vec.syn0.shape[0]
def tree_to_index(node):
token = node.token
result = [vocab[token].index if token in vocab else max_token]
children = node.children
for child in children:
result.append(tree_to_index(child))
return result
def trans2seq(r):
blocks = []
func(r, blocks)
tree = []
for b in blocks:
btree = tree_to_index(b)
tree.append(btree)
return tree
trees = pd.DataFrame(self.sources, copy=True)
trees['code'] = trees['code'].apply(trans2seq)
if 'label' in trees.columns:
trees.drop('label', axis=1, inplace=True)
self.blocks = trees
# merge pairs
示例3: generate_block_seqs
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def generate_block_seqs(self,data_path,part):
from prepare_data import get_blocks as func
from gensim.models.word2vec import Word2Vec
word2vec = Word2Vec.load(self.root+'train/embedding/node_w2v_' + str(self.size)).wv
vocab = word2vec.vocab
max_token = word2vec.syn0.shape[0]
def tree_to_index(node):
token = node.token
result = [vocab[token].index if token in vocab else max_token]
children = node.children
for child in children:
result.append(tree_to_index(child))
return result
def trans2seq(r):
blocks = []
func(r, blocks)
tree = []
for b in blocks:
btree = tree_to_index(b)
tree.append(btree)
return tree
trees = pd.read_pickle(data_path)
trees['code'] = trees['code'].apply(trans2seq)
trees.to_pickle(self.root+part+'/blocks.pkl')
# run for processing data to train
示例4: get_data
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def get_data():
train_vecs=np.load(storedpaths+'train_vecs.npy')
y_train=np.load(storedpaths+'y_train.npy')
test_vecs=np.load(storedpaths+'test_vecs.npy')
y_test=np.load(storedpaths+'y_test.npy')
return train_vecs,y_train,test_vecs,y_test
# 訓練svm模型
開發者ID:ruanyangry,項目名稱:Sentiment_Analysis_cnn_lstm_cnnlstm_textcnn_bilstm,代碼行數:10,代碼來源:sentiment_analysis_ml.py
示例5: get_predict_vecs
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def get_predict_vecs(string,n_dim,w2v_model_path):
'''
string: 輸入的句子
n_dim: 詞向量維度
w2v_model_path: 預訓練詞向量的模型路徑
'''
n_dim = n_dim
text_w2v = Word2Vec.load(w2v_model_path)
words=[i for i in jieba.cut(string,cut_all=False)]
train_vecs = buildWordVector(words, n_dim,text_w2v)
return train_vecs
# 調用訓練模型進行預測
開發者ID:ruanyangry,項目名稱:Sentiment_Analysis_cnn_lstm_cnnlstm_textcnn_bilstm,代碼行數:16,代碼來源:sentiment_analysis_ml.py
示例6: svm_predict
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def svm_predict(string,trainmodelpath):
words_vecs=get_predict_vecs(string)
clf=joblib.load(trainmodelpath)
result=clf.predict(words_vecs)
return result
# Train model
開發者ID:ruanyangry,項目名稱:Sentiment_Analysis_cnn_lstm_cnnlstm_textcnn_bilstm,代碼行數:10,代碼來源:sentiment_analysis_ml.py
示例7: load_pretrained_word_embeddings
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def load_pretrained_word_embeddings(self, embedding_path, kernel='kv'):
trained_embeddings = OrderedDict()
if kernel == 'gensim':
from gensim.models.word2vec import Word2Vec
w2v_model = Word2Vec.load(embedding_path)
word_dict = w2v_model.wv.vocab
for token in word_dict:
if token not in self.word2idx:
continue
trained_embeddings[token] = w2v_model[token].tolist()
if self.word_embed_dim is None:
self.word_embed_dim = len(list(trained_embeddings[token]))
elif kernel == 'kv':
import pickle
with open(embedding_path, 'rb') as fin:
word_dict = pickle.load(fin)
for token in word_dict:
if token not in self.word2idx:
continue
trained_embeddings[token] = word_dict[token]
if self.word_embed_dim is None:
self.word_embed_dim = len(list(trained_embeddings[token]))
else:
raise NotImplementedError("Not support embedding kernel {}.".format(kernel))
filtered_tokens = trained_embeddings.keys()
self.word2idx = OrderedDict()
self.id2token = OrderedDict()
for token in self.init_tokens:
self.add_word(token, cnt=0)
for token in filtered_tokens:
self.add_word(token, cnt=0)
# load embeddings
self.word_embeddings = np.random.rand(self.word_size(), self.word_embed_dim)
for token in self.word2idx.keys():
if token in trained_embeddings:
self.word_embeddings[self.get_word_idx(token)] = trained_embeddings[token]
示例8: load
# 需要導入模塊: from gensim.models.word2vec import Word2Vec [as 別名]
# 或者: from gensim.models.word2vec.Word2Vec import load [as 別名]
def load(self, filename):
'''Load parameters values form a file
'''
self.w2v_model = Word2Vec.load(filename)