本文整理匯總了Python中gensim.models.word2vec.Vocab方法的典型用法代碼示例。如果您正苦於以下問題:Python word2vec.Vocab方法的具體用法?Python word2vec.Vocab怎麽用?Python word2vec.Vocab使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gensim.models.word2vec
的用法示例。
在下文中一共展示了word2vec.Vocab方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_word
# 需要導入模塊: from gensim.models import word2vec [as 別名]
# 或者: from gensim.models.word2vec import Vocab [as 別名]
def add_word(self, word, parent_word, emb, cur_index):
fake_vocab_size = int(1e7)
word_index = len(self.vocab)
inner_node_index = word_index - 1
parent_index = self.vocab[parent_word].index
# add in the left subtree
if word != parent_word:
self.vocab[word] = Vocab(index=word_index, count=fake_vocab_size-word_index,sample_int=(2**32))
if emb is not None:
self.syn0[cur_index] = emb
else:
self.syn0[cur_index] = self.syn0[parent_index]
# the node in the coarsened graph serves as an inner node now
self.index2word.append(word)
self.vocab[word].code = array(list(self.vocab[parent_word].code) + [0], dtype=uint8)
self.vocab[word].point = array(list(self.vocab[parent_word].point) + [inner_node_index], dtype=uint32)
self.inner_node_index_map[parent_word] = inner_node_index
else:
if emb is not None:
self.syn0[parent_index] = emb
self.vocab[word].code = array(list(self.vocab[word].code) + [1], dtype=uint8)
self.vocab[word].point = array(list(self.vocab[word].point) + [self.inner_node_index_map[word]], dtype=uint32)
示例2: build_vocab
# 需要導入模塊: from gensim.models import word2vec [as 別名]
# 或者: from gensim.models.word2vec import Vocab [as 別名]
def build_vocab(self, corpus):
"""
Build vocabulary from a sequence of sentences or from a frequency dictionary, if one was provided.
"""
if self.vocabulary_counts != None:
logger.debug("building vocabulary from provided frequency map")
vocab = self.vocabulary_counts
else:
logger.debug("default vocabulary building")
super(Skipgram, self).build_vocab(corpus)
return
# assign a unique index to each word
self.vocab, self.index2word = {}, []
for word, count in vocab.iteritems():
v = Vocab()
v.count = count
if v.count >= self.min_count:
v.index = len(self.vocab)
self.index2word.append(word)
self.vocab[word] = v
logger.debug("total %i word types after removing those with count<%s" % (len(self.vocab), self.min_count))
if self.hs:
# add info about each word's Huffman encoding
self.create_binary_tree()
if self.negative:
# build the table for drawing random words (for negative sampling)
self.make_table()
# precalculate downsampling thresholds
self.precalc_sampling()
self.reset_weights()
示例3: __init__
# 需要導入模塊: from gensim.models import word2vec [as 別名]
# 或者: from gensim.models.word2vec import Vocab [as 別名]
def __init__(self, pathtomapping, pathtovectors, pathtocounts="", initkeys=()):
"""
SPPMI model equivalent to a gensim word2vec model.
:param pathtomapping:
:param pathtovectors:
:param pathtocounts:
:param initkeys:
:return:
"""
super(SPPMIModel, self).__init__()
self.word2index = json.load(open(pathtomapping))
self.index2word = {v: k for k, v in self.word2index.items()}
self.word_vectors = self._load_sparse(pathtovectors)
self.vocab = {}
self.fast_table = {k: {} for k in initkeys}
if pathtocounts:
counts = json.load(open(pathtocounts))
for w, idx in self.word2index.items():
v = Vocab(count=counts[w], index=idx)
self.vocab[w] = v
示例4: load_word2vec_format
# 需要導入模塊: from gensim.models import word2vec [as 別名]
# 或者: from gensim.models.word2vec import Vocab [as 別名]
def load_word2vec_format(fname, fvocab=None, binary=False, norm_only=True, encoding='utf8'):
"""
Load the input-hidden weight matrix from the original C word2vec-tool format.
Note that the information stored in the file is incomplete (the binary tree is missing),
so while you can query for word similarity etc., you cannot continue training
with a model loaded this way.
`binary` is a boolean indicating whether the data is in binary word2vec format.
`norm_only` is a boolean indicating whether to only store normalised word2vec vectors in memory.
Word counts are read from `fvocab` filename, if set (this is the file generated
by `-save-vocab` flag of the original C tool).
If you trained the C model using non-utf8 encoding for words, specify that
encoding in `encoding`.
"""
counts = None
if fvocab is not None:
logger.info("loading word counts from %s" % (fvocab))
counts = {}
with utils.smart_open(fvocab) as fin:
for line in fin:
word, count = utils.to_unicode(line).strip().split()
counts[word] = int(count)
logger.info("loading projection weights from %s" % (fname))
with utils.smart_open(fname) as fin:
header = utils.to_unicode(fin.readline(), encoding=encoding)
vocab_size, vector_size = map(int, header.split()) # throws for invalid file format
result = Word2Vec(size=vector_size)
result.syn0 = zeros((vocab_size, vector_size), dtype=REAL)
if binary:
binary_len = dtype(REAL).itemsize * vector_size
for line_no in xrange(vocab_size):
# mixed text and binary: read text first, then binary
word = []
while True:
ch = fin.read(1)
if ch == b' ':
break
if ch != b'\n': # ignore newlines in front of words (some binary files have)
word.append(ch)
try:
word = utils.to_unicode(b''.join(word), encoding=encoding)
except UnicodeDecodeError, e:
logger.warning("Couldn't convert whole word to unicode: trying to convert first %d bytes only ..." % e.start)
word = utils.to_unicode(b''.join(word[:e.start]), encoding=encoding)
logger.warning("... first %d bytes converted to '%s'" % (e.start, word))
if counts is None:
result.vocab[word] = Vocab(index=line_no, count=vocab_size - line_no)
elif word in counts:
result.vocab[word] = Vocab(index=line_no, count=counts[word])
else:
logger.warning("vocabulary file is incomplete")
result.vocab[word] = Vocab(index=line_no, count=None)
result.index2word.append(word)
result.syn0[line_no] = fromstring(fin.read(binary_len), dtype=REAL)
else: