當前位置: 首頁>>代碼示例>>Python>>正文


Python KeyedVectors.load_word2vec_format方法代碼示例

本文整理匯總了Python中gensim.models.keyedvectors.KeyedVectors.load_word2vec_format方法的典型用法代碼示例。如果您正苦於以下問題:Python KeyedVectors.load_word2vec_format方法的具體用法?Python KeyedVectors.load_word2vec_format怎麽用?Python KeyedVectors.load_word2vec_format使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gensim.models.keyedvectors.KeyedVectors的用法示例。


在下文中一共展示了KeyedVectors.load_word2vec_format方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def build(train_seg_path, test_seg_path, out_path=None, sentence_path='',
          w2v_bin_path="w2v.bin", min_count=1, col_sep='\t'):
    sentences = extract_sentence(train_seg_path, test_seg_path, col_sep=col_sep)
    save_sentence(sentences, sentence_path)
    print('train w2v model...')
    # train model
    w2v = Word2Vec(sg=1, sentences=LineSentence(sentence_path),
                   size=256, window=5, min_count=min_count, iter=40)
    w2v.wv.save_word2vec_format(w2v_bin_path, binary=True)
    print("save %s ok." % w2v_bin_path)
    # test
    # sim = w2v.wv.similarity('大', '小')
    # print('大 vs 小 similarity score:', sim)
    # load model
    model = KeyedVectors.load_word2vec_format(w2v_bin_path, binary=True)
    word_dict = {}
    for word in model.vocab:
        word_dict[word] = model[word]
    save_pkl(word_dict, out_path, overwrite=True) 
開發者ID:shibing624,項目名稱:text-classifier,代碼行數:21,代碼來源:build_w2v.py

示例2: get_init_embedding

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def get_init_embedding(reversed_dict, embedding_size):
    glove_file = "glove/glove.42B.300d.txt"
    word2vec_file = get_tmpfile("word2vec_format.vec")
    glove2word2vec(glove_file, word2vec_file)
    print("Loading Glove vectors...")
    word_vectors = KeyedVectors.load_word2vec_format(word2vec_file)

    word_vec_list = list()
    for _, word in sorted(reversed_dict.items()):
        try:
            word_vec = word_vectors.word_vec(word)
        except KeyError:
            word_vec = np.zeros([embedding_size], dtype=np.float32)

        word_vec_list.append(word_vec)

    # Assign random vector to <s>, </s> token
    word_vec_list[2] = np.random.normal(0, 1, embedding_size)
    word_vec_list[3] = np.random.normal(0, 1, embedding_size)

    return np.array(word_vec_list) 
開發者ID:dongjun-Lee,項目名稱:text-summarization-tensorflow,代碼行數:23,代碼來源:utils.py

示例3: load_word2vec

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def load_word2vec(filename=None, path=None, binary=False, limit=None):
        if path is not None:
            return KeyedVectors.load_word2vec_format(
                path, binary=binary, limit=limit)
        elif filename is not None:
            for dir_path in ASSET_SEARCH_DIRS:
                try:
                    path = os.path.join(dir_path, filename)
                    return KeyedVectors.load_word2vec_format(
                        path, binary=binary, limit=limit)
                except FileNotFoundError:
                    continue
            raise FileNotFoundError("Please make sure that 'filename' \
                                    specifies the word vector binary name \
                                    in default search paths or 'path' \
                                    speficies file path of the binary")
        else:
            raise TypeError(
                "load_word2vec() requires either 'filename' or 'path' to be set.") 
開發者ID:wikimedia,項目名稱:revscoring,代碼行數:21,代碼來源:vectorizers.py

示例4: __init__

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def __init__(self, dataset, p=1, q=4, walk_length=100,
                 num_walks=50, dimensions=200, window_size=30, workers=8, iterations=5):

        Node2Vec.__init__(self, False, True, False, p, q, walk_length, num_walks, dimensions, window_size,
                          workers, iterations)

        self.dataset = dataset

        file = 'num%d_p%d_q%d_l%d_d%d_iter%d_winsize%d.emd' % (num_walks, p, q,
                                                               walk_length, dimensions,
                                                               iterations, window_size)

        self.path = 'datasets/%s/node2vec/' % self.dataset + file

        if file not in os.listdir('datasets/%s/node2vec/' % self.dataset):

            self.run('datasets/%s/node2vec/altogether.edgelist' % self.dataset,
                             self.path)

        self.node2vec_model = KeyedVectors.load_word2vec_format(self.path, binary=True) 
開發者ID:D2KLab,項目名稱:entity2rec,代碼行數:22,代碼來源:node2vec_recommender.py

示例5: convert

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def convert(fname, save_file):
    with open(fname, 'rb') as dim_file:
        vocab_size, dim = (int(x) for x in dim_file.readline().split())

    word_vectors = KeyedVectors.load_word2vec_format(fname, binary=True)

    print("Loading vectors from {}".format(fname))
    vectors = []
    for line in tqdm(word_vectors.syn0, total=len(word_vectors.syn0)):
        vectors.extend(line.tolist())
    vectors = torch.Tensor(vectors).view(-1, dim)

    stoi = {word.strip():voc.index for word, voc in word_vectors.vocab.items()}

    print('saving vectors to', save_file)
    torch.save((stoi, vectors, dim), save_file) 
開發者ID:castorini,項目名稱:castor,代碼行數:18,代碼來源:build_w2v.py

示例6: gensim_w2v_handler

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def gensim_w2v_handler(url):
    def wrapped(logger):
        with tempfile.TemporaryDirectory() as p:
            vocab_path = os.path.join(p, 'vocab')
            with logger.duration(f'downloading {url}'):
                util.download(url, vocab_path)
            with logger.duration(f'loading binary {vocab_path}'):
                vectors = KeyedVectors.load_word2vec_format(vocab_path, binary=True)
            vocab_path += '.txt'
            with logger.duration(f'saving text {vocab_path}'):
                vectors.save_word2vec_format(vocab_path)
            with logger.duration(f'reading embedding'):
                weights = None
                terms = []
                for i, values in enumerate(plaintext.read_sv(vocab_path, sep=' ')):
                    if i == 0:
                        weights = np.ndarray((int(values[0]), int(values[1])))
                    else:
                        term, values = values[0], values[1:]
                        terms.append(term)
                        weights[i-1] = [float(v) for v in values]
            return terms, np.array(weights)
    return wrapped 
開發者ID:Georgetown-IR-Lab,項目名稱:OpenNIR,代碼行數:25,代碼來源:wordvec.py

示例7: load_pretrained_vectors

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def load_pretrained_vectors(
    dir_path, file_name="GoogleNews-vectors-negative300.bin", limit=None
):
    """ Method that loads word2vec vectors. Downloads if it doesn't exist.

    Args:
        file_name(str): Name of the word2vec file.
        dir_path(str): Path to the directory where word2vec vectors exist or will be
        downloaded.
        limit(int): Number of word vectors that is loaded from gensim. This option
        allows us to save RAM space and avoid memory errors.

    Returns:
        gensim.models.keyedvectors.Word2VecKeyedVectors: Loaded word2vectors

    """
    file_path = _maybe_download_and_extract(dir_path, file_name)
    word2vec_vectors = KeyedVectors.load_word2vec_format(
        file_path, binary=True, limit=limit
    )

    return word2vec_vectors 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:24,代碼來源:word2vec.py

示例8: load_word2vec_model

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def load_word2vec_model(file):
    '''
    load node embedding model
    '''
    model = KeyedVectors.load_word2vec_format(file , binary=False)
    # print model.wv["1"]
    return model 
開發者ID:RoyZhengGao,項目名稱:edge2vec,代碼行數:9,代碼來源:multi_class_classification.py

示例9: load_word2vec_model

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def load_word2vec_model(file):
    '''
    return node embedding model
    '''
    model = KeyedVectors.load_word2vec_format(file , binary=False)
    # print model.wv["1"]
    return model 
開發者ID:RoyZhengGao,項目名稱:edge2vec,代碼行數:9,代碼來源:link_prediction.py

示例10: __init__

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def __init__(self, model_path):
        self.model_path = model_path
        print("loading fastText model ...")
        #self.model = pickle.load(open(self.model_path,"rb"))
        self.model = KeyedVectors.load_word2vec_format(self.model_path, encoding='utf-8', unicode_errors='ignore')
        print("done fastText loading model")
        self.tokenizer = WordPunctTokenizer()
        self.stemmer = ARLSTem()
        self.SYMBOLS = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\"'
        self.vocab = self.model.vocab 
開發者ID:husseinmozannar,項目名稱:SOQAL,代碼行數:12,代碼來源:fasttext_embedding.py

示例11: set_model

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def set_model(self, filename, embed_type='glove'):
        timer = Timer('Load {}'.format(filename))
        if embed_type == 'glove':
            self._model = GloveModel(filename)
        else:
            self._model = KeyedVectors.load_word2vec_format(filename, binary=True
                                                            if embed_type == 'word2vec' else False)
        print('Embeddings: vocab = {}, embed_size = {}'.format(len(self._model.vocab), self._model.vector_size))
        timer.finish() 
開發者ID:stanfordnlp,項目名稱:coqa-baselines,代碼行數:11,代碼來源:word_model.py

示例12: load_word_embeddings

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def load_word_embeddings(path, binary=True):
    w2v_model = KeyedVectors.load_word2vec_format(path, binary=binary)
    return w2v_model 
開發者ID:gabrielspmoreira,項目名稱:chameleon_recsys,代碼行數:5,代碼來源:word_embeddings.py

示例13: sim_mat_and_kernel_d2d

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def sim_mat_and_kernel_d2d(relevance_file, topic_file, corpus_file, topk_corpus_file, embedding_file, stop_file,
                           sim_output_path, kernel_output_path, kernel_mu_list, kernel_sigma_list,
                           topk_supervised, d2d, test):
  '''Simultaneously compute similarity matrix and RBF kernel features

  Args:
    relevance_file: A dumped relevance dict file
    topic_file: a single line format topic file. format: qid term1 term2 ...
    corpus_file: corpus corresponding to docnolist file. format: docno\tdoclen\tterm1 term2
    topk_corpus_file: corpus that contain only the topk terms for each document, format: same as corpus_file
    embedding_file: output file from word2vec toolkit, boolean=True
    stop_file: a stopword list file, one word per line
    sim_output_path:
    kernel_output_path:
    kernel_mu_list:
    kernel_sigma_list:
    topk_supervised: number of top-n documents for each query
    d2d: True for NPRF, False for simple query-document matching used by e.g. DRMM, K-NRM
    test: control the temporary output. Set false

  Returns:

  '''
  relevance_dict = load_pickle(relevance_file)
  topic_dict = parse_topic(topic_file)
  corpus = parse_corpus(corpus_file)
  topk_corpus = parse_corpus(topk_corpus_file)

  embeddings = KeyedVectors.load_word2vec_format(embedding_file, binary=True)
  stoplist = parse_stoplist(stop_file)
  qid_list = relevance_dict.keys()



  for qid in qid_list:
    sim_mat_and_kernel_per_query(relevance_dict, topic_dict, corpus, topk_corpus, embeddings, stoplist, sim_output_path,
                                 kernel_output_path, kernel_mu_list, kernel_sigma_list, topk_supervised, d2d, test, qid) 
開發者ID:ucasir,項目名稱:NPRF,代碼行數:39,代碼來源:prepare_d2d.py

示例14: check_for_similar_words

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def check_for_similar_words(self,):
        from gensim.models.keyedvectors import KeyedVectors
        model = KeyedVectors.load_word2vec_format("../../temp_results/word2vec_hindi.txt", binary=False)
        
        self.pretty_print(u"भारत",model.most_similar(u"भारत"))
        self.pretty_print(u"सिंह",model.most_similar(u"सिंह"))
        self.pretty_print(u"क्रिकेट",model.most_similar(u"क्रिकेट"))
        self.pretty_print(u"रुपये",model.most_similar(u"रुपये")) 
開發者ID:kabrapratik28,項目名稱:DeepNews,代碼行數:10,代碼來源:train.py

示例15: add_embedding

# 需要導入模塊: from gensim.models.keyedvectors import KeyedVectors [as 別名]
# 或者: from gensim.models.keyedvectors.KeyedVectors import load_word2vec_format [as 別名]
def add_embedding(self, property, embedding_file):

        self.embedding_files[property] = KeyedVectors.load_word2vec_format(embedding_file, binary=self.binary) 
開發者ID:D2KLab,項目名稱:entity2rec,代碼行數:5,代碼來源:entity2rel.py


注:本文中的gensim.models.keyedvectors.KeyedVectors.load_word2vec_format方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。