當前位置: 首頁>>代碼示例>>Python>>正文


Python models.LdaMulticore方法代碼示例

本文整理匯總了Python中gensim.models.LdaMulticore方法的典型用法代碼示例。如果您正苦於以下問題:Python models.LdaMulticore方法的具體用法?Python models.LdaMulticore怎麽用?Python models.LdaMulticore使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gensim.models的用法示例。


在下文中一共展示了models.LdaMulticore方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_lda_model

# 需要導入模塊: from gensim import models [as 別名]
# 或者: from gensim.models import LdaMulticore [as 別名]
def create_lda_model(self, **kwargs):
        """ Create a Latent Dirichlet Allocation (LDA) model from the
            entire words database table """
        corpus_tfidf = self.load_tfidf_corpus()
        if self._dictionary is None:
            self.load_dictionary()
        # Initialize an LDA transformation
        lda = models.LdaMulticore(
            corpus_tfidf,
            id2word=self._dictionary,
            num_topics=self._dimensions,
            **kwargs
        )
        if self._verbose:
            lda.print_topics(num_topics=self._dimensions)
        # Save the generated model
        lda.save(self._LDA_MODEL_FILE.format(self._dimensions)) 
開發者ID:mideind,項目名稱:Greynir,代碼行數:19,代碼來源:builder.py

示例2: build_topic_model_from_corpus

# 需要導入模塊: from gensim import models [as 別名]
# 或者: from gensim.models import LdaMulticore [as 別名]
def build_topic_model_from_corpus(corpus, dictionary):
    """
    Builds a topic model with the given corpus and dictionary.
    The model is built using Latent Dirichlet Allocation

    :type corpus list
    :parameter corpus: a list of bag of words, each bag of words represents a
    document
    :type dictionary: gensim.corpora.Dictionary
    :parameter dictionary: a Dictionary object that contains the words that are
    permitted to belong to the document, words that are not in this dictionary
    will be ignored
    :rtype: gensim.models.ldamodel.LdaModel
    :return: an LdaModel built using the reviews contained in the records
    parameter
    """

    # numpy.random.seed(0)
    if Constants.LDA_MULTICORE:
        print('%s: lda multicore' % time.strftime("%Y/%m/%d-%H:%M:%S"))
        topic_model = LdaMulticore(
            corpus, id2word=dictionary,
            num_topics=Constants.TOPIC_MODEL_NUM_TOPICS,
            passes=Constants.TOPIC_MODEL_PASSES,
            iterations=Constants.TOPIC_MODEL_ITERATIONS,
            workers=Constants.NUM_CORES - 1)
    else:
        print('%s: lda monocore' % time.strftime("%Y/%m/%d-%H:%M:%S"))
        topic_model = ldamodel.LdaModel(
            corpus, id2word=dictionary,
            num_topics=Constants.TOPIC_MODEL_NUM_TOPICS,
            passes=Constants.TOPIC_MODEL_PASSES,
            iterations=Constants.TOPIC_MODEL_ITERATIONS)

    return topic_model 
開發者ID:melqkiades,項目名稱:yelp,代碼行數:37,代碼來源:lda_context_utils.py

示例3: load_lda_model

# 需要導入模塊: from gensim import models [as 別名]
# 或者: from gensim.models import LdaMulticore [as 別名]
def load_lda_model(self):
        """ Load a previously generated LDA model """
        self._model = models.LdaMulticore.load(
            self._LDA_MODEL_FILE.format(self._dimensions), mmap="r"
        )
        self._model_name = "lda" 
開發者ID:mideind,項目名稱:Greynir,代碼行數:8,代碼來源:builder.py

示例4: topic_analysis

# 需要導入模塊: from gensim import models [as 別名]
# 或者: from gensim.models import LdaMulticore [as 別名]
def topic_analysis(corpus, dictionary, models_path, technique):

    import uuid
    uuid = str(uuid.uuid4())
    print("[BLOCK] Starting models for context")
    sys.stdout.flush()

    if technique == "all" or technique == "hdp":
        t1 = time()
        # HDP model
        model = HdpModel(corpus, id2word=dictionary)
        model.save("%s/hdp_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for HDP model: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "ldap":
        t1 = time()
        # Parallel LDA model
        model = LdaMulticore(corpus, id2word=dictionary, num_topics=100,  workers=23, passes=20)
        model.save("%s/lda_parallel_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LDA multicore: %s" % (round(t2-t1, 2)))
    sys.stdout.flush()

    if technique == "all" or technique == "lsa":
        t1 = time()
        # LSA model
        model = LsiModel(corpus, id2word=dictionary, num_topics=400)
        model.save("%s/lsa_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LSA: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "ldao":
        t1 = time()
        # Online LDA model
        model = LdaModel(corpus, id2word=dictionary, num_topics=100, update_every=1, chunksize=10000, passes=5)
        model.save("%s/lda_online_%s" % (models_path, uuid))
        t2 = time()
        print("[BLOCK] Training time for LDA online: %s" % (round(t2-t1, 2)))
        sys.stdout.flush()

    if technique == "all" or technique == "lda":
        t1 = time()
        # Offline LDA model
        model = LdaModel(corpus, id2word=dictionary, num_topics=100,  update_every=0, passes=20)
        model.save("%s/lda_offline_%s" % (models_path, uuid))
        del model
        t2 = time()
        print("[BLOCK] Training time for LDA offline: %s" % (round(t2-t1, 2)))
        sys.stdout.flush() 
開發者ID:kafkasl,項目名稱:contextualLSTM,代碼行數:57,代碼來源:topics_analysis.py


注:本文中的gensim.models.LdaMulticore方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。