本文整理匯總了Python中gdal.Warp方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.Warp方法的具體用法?Python gdal.Warp怎麽用?Python gdal.Warp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gdal
的用法示例。
在下文中一共展示了gdal.Warp方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scale_with_gdalwarp
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def scale_with_gdalwarp(array, prj_in, prj_out, dims_out, gt_in, gt_out, resample_alg):
in_src = save_img(array, gt_in, prj_in, 'MEM', noDataValue=np.nan, fieldNames=[])
# Get template projection, extent and resolution
extent = [gt_out[0], gt_out[3]+gt_out[5]*dims_out[0],
gt_out[0]+gt_out[1]*dims_out[1], gt_out[3]]
# Resample with GDAL warp
outDs = gdal.Warp('',
in_src,
dstSRS=prj_out,
xRes=gt_out[1],
yRes=gt_out[5],
outputBounds=extent,
resampleAlg=resample_alg,
format="MEM")
array_out = outDs.GetRasterBand(1).ReadAsArray()
return array_out
示例2: crop2grid
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def crop2grid(self, delete_temp=True):
"""
Crops raster to extent of the geomodel grid.
"""
cornerpoints_geo = self._get_cornerpoints(self.regular_grid_extent)
cornerpoints_dtm = self._get_cornerpoints(self.extent)
# self.check()
if np.any(cornerpoints_geo[:2] - cornerpoints_dtm[:2]) != 0:
path_dest = '_cropped_DEM.tif'
new_bounds = (self.regular_grid_extent[[0, 2, 1, 3]])
gdal.Warp(path_dest, self.dem, options=gdal.WarpOptions(
options=['outputBounds'], outputBounds=new_bounds))
self.dem = gdal.Open(path_dest)
self.dem_zval = self.dem.ReadAsArray()
self._get_raster_dimensions()
print('Cropped raster to geo_model.grid.extent.')
示例3: resample
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def resample(self, new_xres, new_yres, save_path):
"""
Decrease the pixel size of the raster.
Args:
new_xres (int): desired resolution in x-direction
new_yres (int): desired resolution in y-direction
save_path (str): filepath to where the output file should be stored
Returns: Nothing, it writes a raster file with decreased resolution.
"""
props = self.dem.GetGeoTransform()
print('current pixel xsize:', props[1], 'current pixel ysize:', -props[-1])
options = gdal.WarpOptions(options=['tr'], xRes=new_xres, yRes=new_yres)
newfile = gdal.Warp(save_path, self.dem, options=options)
newprops = newfile.GetGeoTransform()
print('new pixel xsize:', newprops[1], 'new pixel ysize:', -newprops[-1])
print('file saved in ' + save_path)
示例4: reproject_image
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def reproject_image(in_raster, out_raster_path, new_projection, driver = "GTiff", memory = 2e3, do_post_resample=True):
"""
Creates a new, reprojected image from in_raster using the gdal.ReprojectImage function.
Parameters
----------
in_raster
Either a gdal.Raster object or a path to a raster
out_raster_path
The path to the new output raster.
new_projection
The new projection in .wkt
driver
The format of the output raster.
memory
The amount of memory to give to the reprojection.
do_post_resample
If set to false, do not resample the image back to the original projection.
Notes
-----
The GDAL reprojection routine changes the size of the pixels by a very small amount; for example, a 10m pixel image
can become a 10.002m pixel resolution image. To stop alignment issues,
by deafult this function resamples the images back to their original resolution
"""
if type(new_projection) is int:
proj = osr.SpatialReference()
proj.ImportFromEPSG(new_projection)
new_projection = proj.ExportToWkt()
log = logging.getLogger(__name__)
log.info("Reprojecting {} to {}".format(in_raster, new_projection))
if type(in_raster) is str:
in_raster = gdal.Open(in_raster)
res = in_raster.GetGeoTransform()[1]
gdal.Warp(out_raster_path, in_raster, dstSRS=new_projection, warpMemoryLimit=memory, format=driver)
# After warping, image has irregular gt; resample back to previous pixel size
# TODO: Make this an option
if do_post_resample:
resample_image_in_place(out_raster_path, res)
return out_raster_path
示例5: resample_image_in_place
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def resample_image_in_place(image_path, new_res):
"""
Resamples an image in-place using gdalwarp to new_res in metres.
WARNING: This will make a permanent change to an image! Use with care.
Parameters
----------
image_path
Path to the image to be resampled
new_res
Pixel edge size in meters
"""
# I don't like using a second object here, but hey.
with TemporaryDirectory() as td:
# Remember this is used for masks, so any averging resample strat will cock things up.
args = gdal.WarpOptions(
xRes=new_res,
yRes=new_res
)
temp_image = os.path.join(td, "temp_image.tif")
gdal.Warp(temp_image, image_path, options=args)
# Urrrgh. Stupid Windows permissions.
if sys.platform.startswith("win"):
os.remove(image_path)
shutil.copy(temp_image, image_path)
else:
shutil.move(temp_image, image_path)
示例6: clip_raster
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def clip_raster(raster_path, aoi_path, out_path, srs_id=4326, flip_x_y = False):
"""
Clips a raster at raster_path to a shapefile given by aoi_path. Assumes a shapefile only has one polygon.
Will np.floor() when converting from geo to pixel units and np.absolute() y resolution form geotransform.
Will also reproject the shapefile to the same projection as the raster if needed.
Parameters
----------
raster_path
Path to the raster to be clipped.
aoi_path
Path to a shapefile containing a single polygon
out_path
Path to a location to save the final output raster
"""
# https://gis.stackexchange.com/questions/257257/how-to-use-gdal-warp-cutline-option
with TemporaryDirectory() as td:
log.info("Clipping {} with {}".format(raster_path, aoi_path))
raster = gdal.Open(raster_path)
in_gt = raster.GetGeoTransform()
srs = osr.SpatialReference()
srs.ImportFromWkt(raster.GetProjection())
intersection_path = os.path.join(td, 'intersection')
aoi = ogr.Open(aoi_path)
if aoi.GetLayer(0).GetSpatialRef().ExportToWkt() != srs.ExportToWkt(): # Gross string comparison. Might replace with wkb
log.info("Non-matching projections, reprojecting.")
aoi = None
tmp_aoi_path = os.path.join(td, "tmp_aoi.shp")
reproject_vector(aoi_path, tmp_aoi_path, srs)
aoi = ogr.Open(tmp_aoi_path)
intersection = get_aoi_intersection(raster, aoi)
min_x_geo, max_x_geo, min_y_geo, max_y_geo = intersection.GetEnvelope()
if flip_x_y:
min_x_geo, min_y_geo = min_y_geo, min_x_geo
max_x_geo, max_y_geo = max_y_geo, max_x_geo
width_pix = int(np.floor(max_x_geo - min_x_geo)/in_gt[1])
height_pix = int(np.floor(max_y_geo - min_y_geo)/np.absolute(in_gt[5]))
new_geotransform = (min_x_geo, in_gt[1], 0, max_y_geo, 0, in_gt[5]) # OK, time for hacking
write_geometry(intersection, intersection_path, srs_id=srs.ExportToWkt())
clip_spec = gdal.WarpOptions(
format="GTiff",
cutlineDSName=intersection_path+r"/geometry.shp", # TODO: Fix the need for this
cropToCutline=True,
width=width_pix,
height=height_pix,
dstSRS=srs
)
out = gdal.Warp(out_path, raster, options=clip_spec)
out.SetGeoTransform(new_geotransform)
out = None
示例7: _reproject
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Warp [as 別名]
def _reproject(input_data, input_type, input_crs, target_crs, dest_path,
resampling_method='bicubic'):
input_crs = _check_crs(input_crs)
target_crs = _check_crs(target_crs)
if input_type == 'vector':
output = input_data.to_crs(target_crs)
if dest_path is not None:
output.to_file(dest_path, driver='GeoJSON')
elif input_type == 'raster':
if isinstance(input_data, rasterio.DatasetReader):
transform, width, height = calculate_default_transform(
input_crs.to_wkt("WKT1_GDAL"), target_crs.to_wkt("WKT1_GDAL"),
input_data.width, input_data.height, *input_data.bounds
)
kwargs = input_data.meta.copy()
kwargs.update({'crs': target_crs.to_wkt("WKT1_GDAL"),
'transform': transform,
'width': width,
'height': height})
if dest_path is not None:
with rasterio.open(dest_path, 'w', **kwargs) as dst:
for band_idx in range(1, input_data.count + 1):
rasterio.warp.reproject(
source=rasterio.band(input_data, band_idx),
destination=rasterio.band(dst, band_idx),
src_transform=input_data.transform,
src_crs=input_data.crs,
dst_transform=transform,
dst_crs=target_crs.to_wkt("WKT1_GDAL"),
resampling=getattr(Resampling, resampling_method)
)
output = rasterio.open(dest_path)
input_data.close()
else:
output = np.zeros(shape=(height, width, input_data.count))
for band_idx in range(1, input_data.count + 1):
rasterio.warp.reproject(
source=rasterio.band(input_data, band_idx),
destination=output[:, :, band_idx-1],
src_transform=input_data.transform,
src_crs=input_data.crs,
dst_transform=transform,
dst_crs=target_crs,
resampling=getattr(Resampling, resampling_method)
)
elif isinstance(input_data, gdal.Dataset):
if dest_path is not None:
gdal.Warp(dest_path, input_data,
dstSRS='EPSG:' + str(target_crs.to_epsg()))
output = gdal.Open(dest_path)
else:
raise ValueError('An output path must be provided for '
'reprojecting GDAL datasets.')
return output