本文整理匯總了Python中gdal.Open方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.Open方法的具體用法?Python gdal.Open怎麽用?Python gdal.Open使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gdal
的用法示例。
在下文中一共展示了gdal.Open方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: save_raster_simple
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def save_raster_simple(array, path, dst_filename):
""" Save an array base on an existing raster """
example = gdal.Open(path)
x_pixels = array.shape[1] # number of pixels in x
y_pixels = array.shape[0] # number of pixels in y
bands = 1
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(dst_filename,x_pixels, y_pixels, bands,
gdal.GDT_Int32)
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
dataset.GetRasterBand(1).WriteArray(array[:,:])
dataset.FlushCache()
示例2: save_raster
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def save_raster(array, path, dst_filename):
""" Save the final multiband array based on an existing raster """
example = gdal.Open(path)
x_pixels = array.shape[2] # number of pixels in x
y_pixels = array.shape[1] # number of pixels in y
bands = array.shape[0]
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(dst_filename,x_pixels,
y_pixels, bands ,gdal.GDT_Int32)
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
for b in range(bands):
dataset.GetRasterBand(b+1).WriteArray(array[b,:,:])
dataset.FlushCache()
示例3: save_raster_memory
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def save_raster_memory(array, path):
""" Save a raster into memory """
example = gdal.Open(path)
x_pixels = array.shape[1] # number of pixels in x
y_pixels = array.shape[0] # number of pixels in y
driver = gdal.GetDriverByName('MEM')
dataset = driver.Create('',x_pixels, y_pixels, 1,gdal.GDT_Int32)
dataset.GetRasterBand(1).WriteArray(array[:,:])
# follow code is adding GeoTranform and Projection
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
return dataset
示例4: fix_alpha_channel
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def fix_alpha_channel(filename):
"""
Imagemagick's 'convert' command converts all channels to 8-bits, including the alpha channel.
Unfortunately it converts the alpha value 255 to 1 when it does this. This is a hack to restore
full transparency values to 255 in the alpha channel.
"""
img = gdal.Open(filename, GA_Update)
mask = img.GetRasterBand(4)
data = mask.ReadAsArray(0, 0, mask.XSize, mask.YSize)
data = np.array([entry * 255 for entry in data])
mask.WriteArray(data)
mask.FlushCache()
# Close the dataset
img = None
data = None
mask = None
示例5: get_edge
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def get_edge(config, input):
""" Get sobel edge extraction
#NOTE: Dependency requirements on the BU Cluster now require this be ran seperately
#The code below would work (uncommented) if OTB could be loaded
"""
# The following line creates an instance of the EdgeExtraction application
# EdgeExtraction = otbApplication.Registry.CreateApplication("EdgeExtraction")
# The following lines set all the application parameters:
# EdgeExtraction.SetParameterString("in", input)
# EdgeExtraction.SetParameterInt("channel", 2) #TODO: set band
dst_path = config['postprocessing']['deg_class']['edge_dir']
dst_filename = dst_path + '/' + input.split('/')[-1].split('.')[0] + '_edge.tif'
# EdgeExtraction.SetParameterString("out", dst_filename)
# The following line execute the application
# EdgeExtraction.ExecuteAndWriteOutput()
im_op = gdal.Open(dst_filename)
im_ar = im_op.ReadAsArray()
return im_ar
示例6: cirrus_correction
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def cirrus_correction(stacked_raster_path, out_path):
stacked_raster = gdal.Open(stacked_raster_path)
ras_array = stacked_raster.GetVirtualMemArray()
r_band = ras_array[0]
g_band = ras_array[1]
b_band = ras_array[2]
cirrus_band = ras_array[3]
out_raster = ras.create_matching_dataset(stacked_raster, out_path, bands = 3)
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
for ii, band in enumerate([r_band, g_band, b_band]):
out_array[ii, ...] = band - ((cirrus_band - 100)*12/(np.log(cirrus_band - 100) +1))
out_array = None
b_band = None
g_band = None
b_band = None
cirrus_band = None
out_array = None
out_raster = None
stacked_raster = None
示例7: strip_bands
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def strip_bands(in_raster_path, out_raster_path, bands_to_strip):
in_raster = gdal.Open(in_raster_path)
out_raster_band_count = in_raster.RasterCount-len(bands_to_strip)
out_raster = create_matching_dataset(in_raster, out_raster_path, bands=out_raster_band_count)
out_raster_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
in_raster_array = in_raster.GetVirtualMemArray()
bands_to_copy = [band for band in range(in_raster_array.shape[0]) if band not in bands_to_strip]
out_raster_array[...] = in_raster_array[bands_to_copy, :,:]
out_raster_array = None
in_raster_array = None
out_raster = None
in_raster = None
return out_raster_path
示例8: flatten_probability_image
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def flatten_probability_image(prob_image, out_path):
"""
Takes a probability output from classify_image and flattens it into a single layer containing only the maximum
value from each pixel.
Parameters
----------
prob_image
The path to a probability image.
out_path
The place to save the flattened image.
"""
prob_raster = gdal.Open(prob_image)
out_raster = create_matching_dataset(prob_raster, out_path, bands=1)
prob_array = prob_raster.GetVirtualMemArray()
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
out_array[:, :] = prob_array.max(axis=0)
out_array = None
prob_array = None
out_raster = None
prob_raster = None
示例9: get_masked_array
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def get_masked_array(raster, mask_path):
"""
Returns a numpy.mask masked array for the raster.
Masked pixels are FALSE in the mask image (multiplicateive map),
but TRUE in the masked_array (nodata pixels). If the raster is multi-band and
the mask is single-band, the mask will be applied to every raster.
Parameters
----------
raster
A gdal.Image object
mask_path
The path to the mask to use
Returns
-------
A numpy.masked array of the raster.
"""
mask = gdal.Open(mask_path)
mask_array = mask.GetVirtualMemArray().squeeze()
raster_array = raster.GetVirtualMemArray()
# If the shapes do not match, assume single-band mask for multi-band raster
if len(mask_array.shape) == 2 and len(raster_array.shape) == 3:
mask_array = project_array(np.asarray(mask_array), raster_array.shape[0], 0)
return np.ma.array(raster_array, mask=np.logical_not(mask_array))
示例10: clip_raster_to_intersection
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def clip_raster_to_intersection(raster_to_clip_path, extent_raster_path, out_raster_path, is_landsat=False):
"""
Clips one raster to the extent proivded by the other raster, and saves the result at out_raster_path.
Assumes both raster_to_clip and extent_raster are in the same projection.
Parameters
----------
raster_to_clip_path
The location of the raster to be clipped.
extent_raster_path
The location of the raster that will provide the extent to clip to
out_raster_path
A location for the finished raster
"""
with TemporaryDirectory() as td:
temp_aoi_path = os.path.join(td, "temp_clip.shp")
get_extent_as_shp(extent_raster_path, temp_aoi_path)
ext_ras = gdal.Open(extent_raster_path)
proj = osr.SpatialReference(wkt=ext_ras.GetProjection())
srs_id = int(proj.GetAttrValue('AUTHORITY', 1))
clip_raster(raster_to_clip_path, temp_aoi_path, out_raster_path, srs_id, flip_x_y = is_landsat)
示例11: raster_to_array
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def raster_to_array(rst_pth):
"""Reads in a raster file and returns a N-dimensional array.
Parameters
----------
rst_pth
Path to input raster.
Returns
-------
As N-dimensional array.
"""
log = logging.getLogger(__name__)
in_ds = gdal.Open(rst_pth)
out_array = in_ds.ReadAsArray()
return out_array
示例12: calc_ndvi
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def calc_ndvi(raster_path, output_path):
raster = gdal.Open(raster_path)
out_raster = create_matching_dataset(raster, output_path, datatype=gdal.GDT_Float32)
array = raster.GetVirtualMemArray()
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
R = array[2, ...]
I = array[3, ...]
out_array[...] = (R-I)/(R+I)
out_array[...] = np.where(out_array == -2147483648, 0, out_array)
R = None
I = None
array = None
out_array = None
raster = None
out_raster = None
示例13: apply_image_function
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def apply_image_function(in_paths, out_path, function, out_datatype = gdal.GDT_Int32):
"""Applies a pixel-wise function across every image. Assumes each image is exactly contiguous and, for now,
single-banded. function() should take a list of values and return a single value."""
rasters = [gdal.Open(in_path) for in_path in in_paths]
raster_arrays = [raster.GetVirtualMemArray() for raster in rasters]
in_array = np.stack(raster_arrays, axis=0)
out_raster = create_matching_dataset(rasters[0], out_path=out_path, datatype=out_datatype)
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
out_array[...] = np.apply_along_axis(function, 0, in_array)
# Deallocating. Not taking any chances here.
out_array = None
out_raster = None
in_array = None
for raster_array, raster in zip(raster_arrays, rasters):
raster_array = None
raster = None
示例14: create_mask_from_model
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def create_mask_from_model(image_path, model_path, model_clear=0, num_chunks=10, buffer_size=0):
"""Returns a multiplicative mask (0 for cloud, shadow or haze, 1 for clear) built from the model at model_path."""
from pyeo.classification import classify_image # Deferred import to deal with circular reference
with TemporaryDirectory() as td:
log = logging.getLogger(__name__)
log.info("Building cloud mask for {} with model {}".format(image_path, model_path))
temp_mask_path = os.path.join(td, "cat_mask.tif")
classify_image(image_path, model_path, temp_mask_path, num_chunks=num_chunks)
temp_mask = gdal.Open(temp_mask_path, gdal.GA_Update)
temp_mask_array = temp_mask.GetVirtualMemArray()
mask_path = get_mask_path(image_path)
mask = create_matching_dataset(temp_mask, mask_path, datatype=gdal.GDT_Byte)
mask_array = mask.GetVirtualMemArray(eAccess=gdal.GF_Write)
mask_array[:, :] = np.where(temp_mask_array != model_clear, 0, 1)
temp_mask_array = None
mask_array = None
temp_mask = None
mask = None
if buffer_size:
buffer_mask_in_place(mask_path, buffer_size)
log.info("Cloud mask for {} saved in {}".format(image_path, mask_path))
return mask_path
示例15: create_mask_from_class_map
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import Open [as 別名]
def create_mask_from_class_map(class_map_path, out_path, classes_of_interest, buffer_size=0, out_resolution=None):
"""Creates a mask from a classification mask: 1 for each pixel containing one of classes_of_interest, otherwise 0"""
# TODO: pull this out of the above function
class_image = gdal.Open(class_map_path)
class_array = class_image.GetVirtualMemArray()
mask_array = np.isin(class_array, classes_of_interest)
out_mask = create_matching_dataset(class_image, out_path, datatype=gdal.GDT_Byte)
out_array = out_mask.GetVirtualMemArray(eAccess=gdal.GA_Update)
np.copyto(out_array, mask_array)
class_array = None
class_image = None
out_array = None
out_mask = None
if out_resolution:
resample_image_in_place(out_path, out_resolution)
if buffer_size:
buffer_mask_in_place(out_path, buffer_size)
return out_path