本文整理匯總了Python中gdal.GDT_Int32方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.GDT_Int32方法的具體用法?Python gdal.GDT_Int32怎麽用?Python gdal.GDT_Int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gdal
的用法示例。
在下文中一共展示了gdal.GDT_Int32方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: save_raster_simple
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def save_raster_simple(array, path, dst_filename):
""" Save an array base on an existing raster """
example = gdal.Open(path)
x_pixels = array.shape[1] # number of pixels in x
y_pixels = array.shape[0] # number of pixels in y
bands = 1
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(dst_filename,x_pixels, y_pixels, bands,
gdal.GDT_Int32)
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
dataset.GetRasterBand(1).WriteArray(array[:,:])
dataset.FlushCache()
示例2: save_raster
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def save_raster(array, path, dst_filename):
""" Save the final multiband array based on an existing raster """
example = gdal.Open(path)
x_pixels = array.shape[2] # number of pixels in x
y_pixels = array.shape[1] # number of pixels in y
bands = array.shape[0]
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(dst_filename,x_pixels,
y_pixels, bands ,gdal.GDT_Int32)
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
for b in range(bands):
dataset.GetRasterBand(b+1).WriteArray(array[b,:,:])
dataset.FlushCache()
示例3: save_raster_memory
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def save_raster_memory(array, path):
""" Save a raster into memory """
example = gdal.Open(path)
x_pixels = array.shape[1] # number of pixels in x
y_pixels = array.shape[0] # number of pixels in y
driver = gdal.GetDriverByName('MEM')
dataset = driver.Create('',x_pixels, y_pixels, 1,gdal.GDT_Int32)
dataset.GetRasterBand(1).WriteArray(array[:,:])
# follow code is adding GeoTranform and Projection
geotrans=example.GetGeoTransform() #get GeoTranform from existed 'data0'
proj=example.GetProjection() #you can get from a exsited tif or import
dataset.SetGeoTransform(geotrans)
dataset.SetProjection(proj)
return dataset
示例4: apply_image_function
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def apply_image_function(in_paths, out_path, function, out_datatype = gdal.GDT_Int32):
"""Applies a pixel-wise function across every image. Assumes each image is exactly contiguous and, for now,
single-banded. function() should take a list of values and return a single value."""
rasters = [gdal.Open(in_path) for in_path in in_paths]
raster_arrays = [raster.GetVirtualMemArray() for raster in rasters]
in_array = np.stack(raster_arrays, axis=0)
out_raster = create_matching_dataset(rasters[0], out_path=out_path, datatype=out_datatype)
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
out_array[...] = np.apply_along_axis(function, 0, in_array)
# Deallocating. Not taking any chances here.
out_array = None
out_raster = None
in_array = None
for raster_array, raster in zip(raster_arrays, rasters):
raster_array = None
raster = None
示例5: apply_band_function
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def apply_band_function(in_path, function, bands, out_path, out_datatype = gdal.GDT_Int32):
"""Applys an arbitrary band mathemtics function to an image at in_path and saves the result at out_map.
Function should be a function ofblect of the form f(band_input_A, band_input_B, ...)"""
raster = gdal.Open(in_path)
out_raster = create_matching_dataset(raster, out_path=out_path, datatype=out_datatype)
array = raster.GetVirtualMemArray()
out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)
band_views = [array[band, ...] for band in bands]
out_array[...] = function(*band_views)
out_array = None
for view in band_views:
view = None
raster = None
out_raster = None
示例6: save_tif
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def save_tif(self, mask, file_path):
'''Save the given mask as a .tif file.
Parameters
mask - A mask generated with masker.
file_path - Path of .tif file.
'''
import gdal
driver = gdal.GetDriverByName('GTiff')
x_pixels = mask.shape[1]
y_pixels = mask.shape[0]
dataset = driver.Create(file_path, x_pixels, y_pixels, 1, gdal.GDT_Int32)
if self.file_path is not None:
extension = os.path.splitext(self.file_path)[1].lower()
if extension == '.hdf':
hdfdataset = gdal.Open(self.file_path)
subdataset = hdfdataset.GetSubDatasets()[0][0]
bandfile = gdal.Open(subdataset)
else:
bandfile = gdal.Open(self.file_path)
dataset.SetGeoTransform(bandfile.GetGeoTransform())
dataset.SetProjection(bandfile.GetProjectionRef())
dataset.GetRasterBand(1).WriteArray(mask)
dataset.FlushCache()
示例7: getDTfromGDAL
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def getDTfromGDAL(gdal_dt):
"""
Returns datatype (numpy/scipy) from gdal_dt.
Parameters
----------
gdal_dt : datatype
data.GetRasterBand(1).DataType
Return
----------
dt : datatype
"""
if gdal_dt == gdal.GDT_Byte:
dt = 'uint8'
elif gdal_dt == gdal.GDT_Int16:
dt = 'int16'
elif gdal_dt == gdal.GDT_UInt16:
dt = 'uint16'
elif gdal_dt == gdal.GDT_Int32:
dt = 'int32'
elif gdal_dt == gdal.GDT_UInt32:
dt = 'uint32'
elif gdal_dt == gdal.GDT_Float32:
dt = 'float32'
elif gdal_dt == gdal.GDT_Float64:
dt = 'float64'
elif gdal_dt == gdal.GDT_CInt16 or gdal_dt == gdal.GDT_CInt32 or gdal_dt == gdal.GDT_CFloat32 or gdal_dt == gdal.GDT_CFloat64:
dt = 'complex64'
else:
print('Data type unkown')
# exit()
return dt
示例8: getGDALGDT
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def getGDALGDT(dt):
"""
Need arr.dtype.name in entry.
Returns gdal_dt from dt (numpy/scipy).
Parameters
----------
dt : datatype
Return
----------
gdal_dt : gdal datatype
"""
if dt == 'bool' or dt == 'uint8':
gdal_dt = gdal.GDT_Byte
elif dt == 'int8' or dt == 'int16':
gdal_dt = gdal.GDT_Int16
elif dt == 'uint16':
gdal_dt = gdal.GDT_UInt16
elif dt == 'int32':
gdal_dt = gdal.GDT_Int32
elif dt == 'uint32':
gdal_dt = gdal.GDT_UInt32
elif dt == 'int64' or dt == 'uint64' or dt == 'float16' or dt == 'float32':
gdal_dt = gdal.GDT_Float32
elif dt == 'float64':
gdal_dt = gdal.GDT_Float64
elif dt == 'complex64':
gdal_dt = gdal.GDT_CFloat64
else:
print('Data type non-suported')
# exit()
return gdal_dt
示例9: pts2raster
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def pts2raster(shapefile,RASTER_PATH,cellSize,field_name=False):
from osgeo import gdal, ogr
# Define pixel_size and NoData value of new raster
pixel_size = cellSize
NoData_value = -9999
# Filename of input OGR file
vector_ptsShp_fn = shapefile
# Filename of the raster Tiff that will be created
raster_ptsShp_fn = RASTER_PATH
# Open the data source and read in the extent
source_ds = ogr.Open(vector_ptsShp_fn)
source_layer = source_ds.GetLayer()
x_min, x_max, y_min, y_max = source_layer.GetExtent()
# Create the destination data source
x_res = int((x_max - x_min) / pixel_size)
y_res = int((y_max - y_min) / pixel_size)
target_ds = gdal.GetDriverByName('GTiff').Create(raster_ptsShp_fn, x_res, y_res, 1, gdal.GDT_Int32 )
target_ds.SetGeoTransform((x_min, pixel_size, 0, y_max, 0, -pixel_size))
band = target_ds.GetRasterBand(1)
band.SetNoDataValue(NoData_value)
# Rasterize
# gdal.RasterizeLayer(target_ds, [1], source_layer, burn_values=[0])
# Rasterize
if field_name:
gdal.RasterizeLayer(target_ds,[1], source_layer,options=["ATTRIBUTE={0}".format(field_name)])
# print("write:",field_name)
else:
gdal.RasterizeLayer(target_ds,[1], source_layer,burn_values=[-1])
return gdal.Open(RASTER_PATH).ReadAsArray()
#批量計算
示例10: mosaic_images
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def mosaic_images(raster_paths, out_raster_file, format="GTiff", datatype=gdal.GDT_Int32, nodata = 0):
"""
Mosaics multiple images with the same number of layers into one single image. Overwrites
overlapping pixels with the value furthest down raster_paths. Takes projection from the first
raster.
Parameters
----------
raster_paths
A list of paths of raster to be mosaiced
out_raster_file
The path to the output file
format
The image format of the output raster.
datatype
The datatype of the output raster
nodata
The input nodata value; any pixels in raster_paths with this value will be ignored.
"""
# This, again, is very similar to stack_rasters
log = logging.getLogger(__name__)
log.info("Beginning mosaic")
rasters = [gdal.Open(raster_path) for raster_path in raster_paths]
projection = rasters[0].GetProjection()
in_gt = rasters[0].GetGeoTransform()
x_res = in_gt[1]
y_res = in_gt[5] * -1 # Y resolution in agt is -ve for Maths reasons
combined_polygon = align_bounds_to_whole_number(get_combined_polygon(rasters, geometry_mode='union'))
layers = rasters[0].RasterCount
out_raster = create_new_image_from_polygon(combined_polygon, out_raster_file, x_res, y_res, layers,
projection, format, datatype)
log.info("New empty image created at {}".format(out_raster_file))
out_raster_array = out_raster.GetVirtualMemArray(eAccess=gdal.GF_Write)
for i, raster in enumerate(rasters):
log.info("Now mosaicking raster no. {}".format(i))
in_raster_array = raster.GetVirtualMemArray()
if len(in_raster_array.shape) == 2:
in_raster_array = np.expand_dims(in_raster_array, 0)
in_bounds = get_raster_bounds(raster)
out_x_min, out_x_max, out_y_min, out_y_max = pixel_bounds_from_polygon(out_raster, in_bounds)
out_raster_view = out_raster_array[:, out_y_min: out_y_max, out_x_min: out_x_max]
np.copyto(out_raster_view, in_raster_array, where=in_raster_array != nodata)
in_raster_array = None
out_raster_view = None
log.info("Raster mosaicking done")
out_raster_array = None
示例11: create_new_image_from_polygon
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def create_new_image_from_polygon(polygon, out_path, x_res, y_res, bands,
projection, format="GTiff", datatype = gdal.GDT_Int32, nodata = -9999):
"""
Returns an empty image that covers the extent of the imput polygon.
Parameters
----------
polygon
An OGR.Geometry object of a single polygon
out_path
The path to save the new image to
x_res
Pixel width in the new image
y_res
Pixel height in the new image
bands
Number of bands in the new image.
projection
The projection, in wkt, of the output image.
format
The gdal raster format of the output image
datatype
The gdal datatype of the output image
nodata
The nodata value of the output image
Returns
-------
A gdal.Image object
"""
# TODO: Implement nodata
bounds_x_min, bounds_x_max, bounds_y_min, bounds_y_max = polygon.GetEnvelope()
if bounds_x_min >= bounds_x_max:
bounds_x_min, bounds_x_max = bounds_x_max, bounds_x_min
if bounds_y_min >= bounds_y_max:
bounds_y_min, bounds_y_max = bounds_y_max, bounds_y_min
final_width_pixels = int(np.abs(bounds_x_max - bounds_x_min) / x_res)
final_height_pixels = int(np.abs(bounds_y_max - bounds_y_min) / y_res)
driver = gdal.GetDriverByName(format)
out_raster = driver.Create(
out_path, xsize=final_width_pixels, ysize=final_height_pixels,
bands=bands, eType=datatype
)
out_raster.SetGeoTransform([
bounds_x_min, x_res, 0,
bounds_y_max, 0, y_res * -1
])
out_raster.SetProjection(projection)
return out_raster
示例12: open_data
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GDT_Int32 [as 別名]
def open_data(filename):
'''
The function open and load the image given its name.
The type of the data is checked from the file and the scipy array is initialized accordingly.
Input:
filename: the name of the file
Output:
im: the data cube
GeoTransform: the geotransform information
Projection: the projection information
'''
data = gdal.Open(filename, gdal.GA_ReadOnly)
if data is None:
print('Impossible to open ' + filename)
# exit()
nc = data.RasterXSize
nl = data.RasterYSize
d = data.RasterCount
# Get the type of the data
gdal_dt = data.GetRasterBand(1).DataType
if gdal_dt == gdal.GDT_Byte:
dt = 'uint8'
elif gdal_dt == gdal.GDT_Int16:
dt = 'int16'
elif gdal_dt == gdal.GDT_UInt16:
dt = 'uint16'
elif gdal_dt == gdal.GDT_Int32:
dt = 'int32'
elif gdal_dt == gdal.GDT_UInt32:
dt = 'uint32'
elif gdal_dt == gdal.GDT_Float32:
dt = 'float32'
elif gdal_dt == gdal.GDT_Float64:
dt = 'float64'
elif gdal_dt == gdal.GDT_CInt16 or gdal_dt == gdal.GDT_CInt32 or gdal_dt == gdal.GDT_CFloat32 or gdal_dt == gdal.GDT_CFloat64:
dt = 'complex64'
else:
print('Data type unkown')
# exit()
# Initialize the array
if d == 1:
im = np.empty((nl, nc), dtype=dt)
else:
im = np.empty((nl, nc, d), dtype=dt)
if d == 1:
im[:, :] = data.GetRasterBand(1).ReadAsArray()
else:
for i in range(d):
im[:, :, i] = data.GetRasterBand(i + 1).ReadAsArray()
GeoTransform = data.GetGeoTransform()
Projection = data.GetProjection()
data = None
return im, GeoTransform, Projection