本文整理匯總了Python中gdal.GA_ReadOnly方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.GA_ReadOnly方法的具體用法?Python gdal.GA_ReadOnly怎麽用?Python gdal.GA_ReadOnly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gdal
的用法示例。
在下文中一共展示了gdal.GA_ReadOnly方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: do_proximity
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def do_proximity(config, image, srcarray, label, _class):
""" Get proximity of each pixel to to certain value """
#First create a band in memory that's that's just 1s and 0s
src_ds = gdal.Open( image, gdal.GA_ReadOnly )
srcband = src_ds.GetRasterBand(1)
mem_rast = save_raster_memory(srcarray, image)
mem_band = mem_rast.GetRasterBand(1)
#Now the code behind gdal_sieve.py
maskband = None
drv = gdal.GetDriverByName('GTiff')
#Need to output sieved file
dst_path = config['postprocessing']['deg_class']['prox_dir']
dst_filename = dst_path + '/' + image.split('/')[-1].split('.')[0] + '_' + _class + '.tif'
dst_ds = drv.Create( dst_filename,src_ds.RasterXSize, src_ds.RasterYSize,1,
srcband.DataType )
wkt = src_ds.GetProjection()
if wkt != '':
dst_ds.SetProjection( wkt )
dst_ds.SetGeoTransform( src_ds.GetGeoTransform() )
dstband = dst_ds.GetRasterBand(1)
# Parameters
prog_func = None
options = []
options.append( 'VALUES=' + str(label) )
result = gdal.ComputeProximity(mem_band, dstband, options)#,
#callback = prog_func )
proximity = dstband.ReadAsArray()
return proximity
示例2: open_inumpyut
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def open_inumpyut(self,vrt):
if vrt:
self.in_ds = gdal.Open(vrt, gdal.GA_ReadOnly)
else:
raise Exception("No vrt file was specified")
if self.options.verbose:
print("Inumpyut file:", "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, self.in_ds.RasterCount))
if not self.in_ds:
# Note: GDAL prints the ERROR message too
self.error("It is not possible to open the inumpyut file '%s'." % vrt )
if self.in_ds.RasterCount == 0:
self.error( "Inumpyut file '%s' has no raster band" % vrt )
self.out_ds = self.in_ds
# Get alpha band (either directly or from NODATA value)
self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand()
if (self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or self.out_ds.RasterCount==4 or self.out_ds.RasterCount==2:
self.dataBandsCount = self.out_ds.RasterCount - 1
else:
self.dataBandsCount = self.out_ds.RasterCount
# -------------------------------------------------------------------------
示例3: sieve_strata
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def sieve_strata(config, image):
""" First create a band in memory that's that's just 1s and 0s """
src_ds = gdal.Open( image, gdal.GA_ReadOnly )
srcband = src_ds.GetRasterBand(1)
srcarray = srcband.ReadAsArray()
mem_rast = save_raster_memory(srcarray, image)
mem_band = mem_rast.GetRasterBand(1)
#Now the code behind gdal_sieve.py
maskband = None
drv = gdal.GetDriverByName('GTiff')
#Need to output sieved file
dst_path = config['postprocessing']['sieve']['sieve_file']
dst_filename = dst_path + '/' + image.split('/')[-1].split('.')[0] + '_sieve_mask.tif'
dst_ds = drv.Create( dst_filename,src_ds.RasterXSize, src_ds.RasterYSize,1,
srcband.DataType )
wkt = src_ds.GetProjection()
if wkt != '':
dst_ds.SetProjection( wkt )
dst_ds.SetGeoTransform( src_ds.GetGeoTransform() )
dstband = dst_ds.GetRasterBand(1)
# Parameters
prog_func = None
threshold = config['postprocessing']['sieve']['threshold_strata']
connectedness = config['postprocessing']['sieve']['connectedness']
if connectedness not in [8, 4]:
print "connectness only supports value of 4 or 8"
sys.exit()
result = gdal.SieveFilter(mem_band, maskband, dstband,
threshold, connectedness,
callback = prog_func )
sieved = dstband.ReadAsArray()
dst_full = config['postprocessing']['sieve']['sieved_output']
if dst_full:
dst_full_name = dst_full + '/' + image.split('/')[-1].split('.')[0] + '_sieved.tif'
save_raster_simple(sieved, image, dst_full_name)
return sieved
示例4: sieve
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def sieve(config, image):
""" First create a band in memory that's that's just 1s and 0s """
src_ds = gdal.Open( image, gdal.GA_ReadOnly )
srcband = src_ds.GetRasterBand(1)
srcarray = srcband.ReadAsArray()
srcarray[srcarray > 0] = 1
mem_rast = save_raster_memory(srcarray, image)
mem_band = mem_rast.GetRasterBand(1)
#Now the code behind gdal_sieve.py
maskband = None
drv = gdal.GetDriverByName('GTiff')
#Need to output sieved file
dst_path = config['postprocessing']['sieve']['sieve_file']
dst_filename = dst_path + '/' + image.split('/')[-1].split('.')[0] + '_sieve_mask.tif'
dst_ds = drv.Create( dst_filename,src_ds.RasterXSize, src_ds.RasterYSize,1,
srcband.DataType )
wkt = src_ds.GetProjection()
if wkt != '':
dst_ds.SetProjection( wkt )
dst_ds.SetGeoTransform( src_ds.GetGeoTransform() )
dstband = dst_ds.GetRasterBand(1)
# Parameters
prog_func = None
threshold = config['postprocessing']['sieve']['threshold']
connectedness = config['postprocessing']['sieve']['connectedness']
if connectedness not in [8, 4]:
print "connectness only supports value of 4 or 8"
sys.exit()
result = gdal.SieveFilter(mem_band, maskband, dstband,
threshold, connectedness,
callback = prog_func )
sieved = dstband.ReadAsArray()
sieved[sieved < 0] = 0
src_new = gdal.Open(image)
out_img = src_new.ReadAsArray().astype(np.float)
out_img[np.isnan(out_img)] = 0
for b in range(out_img.shape[0]):
out_img[b,:,:][sieved == 0] = 0
dst_full = config['postprocessing']['sieve']['sieved_output']
if dst_full:
dst_full_name = dst_full + '/' + image.split('/')[-1].split('.')[0] + '_sieved.tif'
save_raster(out_img, image, dst_full_name)
return out_img
示例5: open_data
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def open_data(filename):
'''
The function open and load the image given its name.
The type of the data is checked from the file and the scipy array is initialized accordingly.
Input:
filename: the name of the file
Output:
im: the data cube
GeoTransform: the geotransform information
Projection: the projection information
'''
data = gdal.Open(filename, gdal.GA_ReadOnly)
if data is None:
print('Impossible to open ' + filename)
# exit()
nc = data.RasterXSize
nl = data.RasterYSize
d = data.RasterCount
# Get the type of the data
gdal_dt = data.GetRasterBand(1).DataType
if gdal_dt == gdal.GDT_Byte:
dt = 'uint8'
elif gdal_dt == gdal.GDT_Int16:
dt = 'int16'
elif gdal_dt == gdal.GDT_UInt16:
dt = 'uint16'
elif gdal_dt == gdal.GDT_Int32:
dt = 'int32'
elif gdal_dt == gdal.GDT_UInt32:
dt = 'uint32'
elif gdal_dt == gdal.GDT_Float32:
dt = 'float32'
elif gdal_dt == gdal.GDT_Float64:
dt = 'float64'
elif gdal_dt == gdal.GDT_CInt16 or gdal_dt == gdal.GDT_CInt32 or gdal_dt == gdal.GDT_CFloat32 or gdal_dt == gdal.GDT_CFloat64:
dt = 'complex64'
else:
print('Data type unkown')
# exit()
# Initialize the array
if d == 1:
im = np.empty((nl, nc), dtype=dt)
else:
im = np.empty((nl, nc, d), dtype=dt)
if d == 1:
im[:, :] = data.GetRasterBand(1).ReadAsArray()
else:
for i in range(d):
im[:, :, i] = data.GetRasterBand(i + 1).ReadAsArray()
GeoTransform = data.GetGeoTransform()
Projection = data.GetProjection()
data = None
return im, GeoTransform, Projection
示例6: get_metadata_from_loc
# 需要導入模塊: import gdal [as 別名]
# 或者: from gdal import GA_ReadOnly [as 別名]
def get_metadata_from_loc(loc_file: str, lut_params: LUTConfig, trim_lines: int = 5, nodata_value: float = -9999) -> \
(float, float, float, np.array):
""" Get metadata needed for complete runs from the location file (bands long, lat, elev).
Args:
loc_file: file name to pull data from
lut_params: parameters to use to define lut grid
trim_lines: number of lines to ignore at beginning and end of file (good if lines contain values that are
erroneous but not nodata
nodata_value: value to ignore from location file
:Returns:
tuple containing:
mean_latitude - mean latitude of good values from the location file
mean_longitude - mean latitude of good values from the location file
mean_elevation_km - mean ground estimate of good values from the location file
elevation_lut_grid - the elevation look up table, based on globals and values from location file
"""
loc_dataset = gdal.Open(loc_file, gdal.GA_ReadOnly)
loc_data = np.zeros((loc_dataset.RasterCount, loc_dataset.RasterYSize, loc_dataset.RasterXSize))
for line in range(loc_dataset.RasterYSize):
# Read line in
loc_data[:,line:line+1,:] = loc_dataset.ReadAsArray(0, line, loc_dataset.RasterXSize, 1)
valid = np.logical_not(np.any(loc_data == nodata_value,axis=0))
if trim_lines != 0:
valid[:trim_lines, :] = False
valid[-trim_lines:, :] = False
# Grab zensor position and orientation information
mean_latitude = find_angular_seeds(loc_data[1,valid].flatten(),1)
mean_longitude = find_angular_seeds(-1 * loc_data[0,valid].flatten(),1)
mean_elevation_km = np.mean(loc_data[2,valid]) / 1000.0
# make elevation grid
if lut_params.num_elev_lut_elements == 1:
elevation_lut_grid = None
else:
min_elev = np.min(loc_data[2, valid])/1000.
max_elev = np.max(loc_data[2, valid])/1000.
elevation_lut_grid = np.linspace(max(min_elev, EPS),
max_elev,
lut_params.num_elev_lut_elements)
return mean_latitude, mean_longitude, mean_elevation_km, elevation_lut_grid