當前位置: 首頁>>代碼示例>>Python>>正文


Python fuzz.token_sort_ratio方法代碼示例

本文整理匯總了Python中fuzzywuzzy.fuzz.token_sort_ratio方法的典型用法代碼示例。如果您正苦於以下問題:Python fuzz.token_sort_ratio方法的具體用法?Python fuzz.token_sort_ratio怎麽用?Python fuzz.token_sort_ratio使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fuzzywuzzy.fuzz的用法示例。


在下文中一共展示了fuzz.token_sort_ratio方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_features

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def extract_features(df):
    df["question1"] = df["question1"].fillna("").apply(preprocess)
    df["question2"] = df["question2"].fillna("").apply(preprocess)

    print("token features...")
    token_features = df.apply(lambda x: get_token_features(x["question1"], x["question2"]), axis=1)
    df["cwc_min"]       = list(map(lambda x: x[0], token_features))
    df["cwc_max"]       = list(map(lambda x: x[1], token_features))
    df["csc_min"]       = list(map(lambda x: x[2], token_features))
    df["csc_max"]       = list(map(lambda x: x[3], token_features))
    df["ctc_min"]       = list(map(lambda x: x[4], token_features))
    df["ctc_max"]       = list(map(lambda x: x[5], token_features))
    df["last_word_eq"]  = list(map(lambda x: x[6], token_features))
    df["first_word_eq"] = list(map(lambda x: x[7], token_features))
    df["abs_len_diff"]  = list(map(lambda x: x[8], token_features))
    df["mean_len"]      = list(map(lambda x: x[9], token_features))

    print("fuzzy features..")
    df["token_set_ratio"]       = df.apply(lambda x: fuzz.token_set_ratio(x["question1"], x["question2"]), axis=1)
    df["token_sort_ratio"]      = df.apply(lambda x: fuzz.token_sort_ratio(x["question1"], x["question2"]), axis=1)
    df["fuzz_ratio"]            = df.apply(lambda x: fuzz.QRatio(x["question1"], x["question2"]), axis=1)
    df["fuzz_partial_ratio"]    = df.apply(lambda x: fuzz.partial_ratio(x["question1"], x["question2"]), axis=1)
    df["longest_substr_ratio"]  = df.apply(lambda x: get_longest_substr_ratio(x["question1"], x["question2"]), axis=1)
    return df 
開發者ID:aerdem4,項目名稱:kaggle-quora-dup,代碼行數:26,代碼來源:nlp_feature_extraction.py

示例2: _create_fuzzy_wuzzy_features

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def _create_fuzzy_wuzzy_features(self, df):
        df['fuzzy_ratio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.ratio(row['spn_1'], row['spn_2']), axis=1)
        df['fuzzy_set_ratio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.token_set_ratio(row['spn_1'], row['spn_2']), axis=1)
        df['fuzzy_partial_ratio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.partial_ratio(row['spn_1'], row['spn_2']), axis=1)
        df['fuzzy_token_sort_ratio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.token_sort_ratio(row['spn_1'], row['spn_2']), axis=1)
        df['fuzzy_qratio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.QRatio(row['spn_1'], row['spn_2']), axis=1)
        df['fuzzy_WRatio'] = df[['spn_1', 'spn_2']].apply(lambda row: fuzz.WRatio(row['spn_1'], row['spn_2']), axis=1)
   
        def _get_longest_substr_ratio(a, b):
            strs = list(distance.lcsubstrings(a, b))
            if len(strs) == 0:
                return 0
            else:
                return len(strs[0]) / (min(len(a), len(b)) + 1)

        df['longest_substr_ratio'] = df[['spn_1', 'spn_2']].apply(lambda row: _get_longest_substr_ratio(row['spn_1'], row['spn_2']), axis=1) 
開發者ID:zake7749,項目名稱:CIKM-AnalytiCup-2018,代碼行數:18,代碼來源:feature_engineering.py

示例3: extract_stat_features

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def extract_stat_features(self,df):
        df["title1_zh"] = df["title1_zh"].fillna("").apply(self.__preprocess__)
        df["title2_zh"] = df["title2_zh"].fillna("").apply(self.__preprocess__)

        print("token features...")
        token_features = df.apply(lambda x: self.__get_token_features__(x["title1_zh"], x["title2_zh"]), axis=1)
        df["cwc_min"]       = list(map(lambda x: x[0], token_features))
        df["cwc_max"]       = list(map(lambda x: x[1], token_features))
        df["csc_min"]       = list(map(lambda x: x[2], token_features))
        df["csc_max"]       = list(map(lambda x: x[3], token_features))
        df["ctc_min"]       = list(map(lambda x: x[4], token_features))
        df["ctc_max"]       = list(map(lambda x: x[5], token_features))
        df["last_word_eq"]  = list(map(lambda x: x[6], token_features))
        df["first_word_eq"] = list(map(lambda x: x[7], token_features))
        df["abs_len_diff"]  = list(map(lambda x: x[8], token_features))
        df["mean_len"]      = list(map(lambda x: x[9], token_features))

        print("fuzzy features..")
        df["token_set_ratio"]       = df.apply(lambda x: fuzz.token_set_ratio(x["title1_zh"], x["title2_zh"]), axis=1)
        df["token_sort_ratio"]      = df.apply(lambda x: fuzz.token_sort_ratio(x["title1_zh"], x["title2_zh"]), axis=1)
        df["fuzz_ratio"]            = df.apply(lambda x: fuzz.QRatio(x["title1_zh"], x["title2_zh"]), axis=1)
        df["fuzz_partial_ratio"]    = df.apply(lambda x: fuzz.partial_ratio(x["title1_zh"], x["title2_zh"]), axis=1)
        df["longest_substr_ratio"]  = df.apply(lambda x: self.__get_longest_substr_ratio__(x["title1_zh"], x["title2_zh"]), axis=1)
        
        if 'label' in df.columns.tolist():
            return df.drop(["title1_zh", "title2_zh", "label"], axis=1).values
        else:
            return df.drop(["title1_zh", "title2_zh"], axis=1).values 
開發者ID:lampts,項目名稱:wsdm19cup,代碼行數:30,代碼來源:make_handcrafted_33_features.py

示例4: token_sort_ratio

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def token_sort_ratio(str1: str, str2: str) -> int:
    """Get token sorted fuzzy ratio with korean text"""

    return fuzz.token_sort_ratio(
        normalize_korean_nfc_to_nfd(str1), normalize_korean_nfc_to_nfd(str2),
    ) 
開發者ID:item4,項目名稱:yui,代碼行數:8,代碼來源:fuzz.py

示例5: match

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def match(s1: str, s2: str) -> int:
    """Get custom ratio for yui functions"""

    rng = [len(s1), len(s2)]
    tsr = token_sort_ratio(s1, s2)
    r = ratio(s1, s2)
    weight = 1 - (min(rng) / max(rng))
    return max(0, min(100, int(r * (1 + weight * tsr / 100)))) 
開發者ID:item4,項目名稱:yui,代碼行數:10,代碼來源:fuzz.py

示例6: partial_string_based

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def partial_string_based(str1, str2):
    """Performs a partial string match using the Jaro-Winkler distance algorithm.

    Args:
        str1: A string value to check.
        str2: A string value to check.

    Returns:
        float: Number between 0.0 and 1.0 depending on match criteria.

    """
    from fuzzywuzzy import fuzz
    result = fuzz.token_sort_ratio(str1, str2, force_ascii=False)
    logger.debug("--\t\tpartial_string_based '%s' '%s'\tresult: '%s'", str1, str2, result)
    return result / 100.0 
開發者ID:oasis-open,項目名稱:cti-python-stix2,代碼行數:17,代碼來源:environment.py

示例7: sort_ratio_fuzzywuzzy

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def sort_ratio_fuzzywuzzy(str1, str2):
    return fuzz.token_sort_ratio(str1, str2) 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:4,代碼來源:distance_text_or_vec.py

示例8: extract_string_similarity_vector

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def extract_string_similarity_vector(instance: dict):
    """
    Returns a vector encoding a variety of lexical similarity metrics given a dictionary containing keys
    sentence_1,sentence_2
    :return: a vector containing similarity scores
    """

    s1 = instance['sentence_1']
    s2 = instance['sentence_2']

    return torch.tensor([
        normalized_levenshtein.similarity(s1,s2),
        jarowinkler.similarity(s1,s2),
        metric_lcs.distance(s1,s2),
        qgram2.distance(s1,s2),
        qgram3.distance(s1,s2),
        qgram4.distance(s1,s2),
        jaccard.similarity(s1,s2),
        cosine.similarity(s1,s2),
        fuzz.partial_token_set_ratio(s1,s2),
        fuzz.partial_token_sort_ratio(s1,s2),
        fuzz.token_set_ratio(s1,s2),
        fuzz.token_sort_ratio(s1,s2),
        fuzz.QRatio(s1,s2),
        fuzz.UQRatio(s1,s2),
        fuzz.UWRatio(s1,s2),
        fuzz.WRatio(s1,s2)
    ]) 
開發者ID:AndriyMulyar,項目名稱:semantic-text-similarity,代碼行數:30,代碼來源:lexical_similarity_metrics.py

示例9: erPredict

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def erPredict(self, chunks):
        erpredictions = []
        combinedchunks = []
        for chunk in chunks:
            wordlist = []
            surfacestart = chunk[0][2]
            for word in chunk:
                wordlist.append(word[0])
                surfacelength = word[2]+word[3] - surfacestart
            wordlist = ' '.join(wordlist)
            combinedchunks.append((wordlist,surfacestart,surfacelength))
         
        for chunk in combinedchunks:
            x = None
            chunkk = chunk[0].encode('ascii','ignore')
            chunkwords = chunkk.translate(None, string.punctuation)
            embedding = self.embed(chunkwords)
            esresult = self.es.search(index="dbentityindex11", body={"query":{"multi_match":{"query":chunkwords,"fields":["wikidataLabel", "dbpediaLabel^1.5"]}},"size":1})
            topresult = esresult['hits']['hits']
            if len(topresult) == 1:
                topresult = topresult[0]
                if 'dbpediaLabel' in topresult['_source']:
                    x = embedding + [topresult['_score']] + [fuzz.ratio(chunkwords, topresult['_source']['dbpediaLabel'])/100.0] + [fuzz.partial_ratio(chunkwords, topresult['_source']['dbpediaLabel'])/100.0] + [fuzz.token_sort_ratio(chunkwords, topresult['_source']['dbpediaLabel'])/100.0]
                if 'wikidataLabel' in topresult['_source']:
                    x = embedding + [topresult['_score']] + [fuzz.ratio(chunkwords, topresult['_source']['wikidataLabel'])/100.0] + [fuzz.partial_ratio(chunkwords, topresult['_source']['wikidataLabel'])/100.0] + [fuzz.token_sort_ratio(chunkwords, topresult['_source']['wikidataLabel'])/100.0]
            else:
                x = embedding + [0.0,0.0,0.0,0.0]
        #print(x, type(x))
            x = torch.FloatTensor(x)  
            pred = self.ermodel(x)
            print(chunkwords,pred,pred[0])
            if pred[0] >0.5:
                erpredictions.append({'chunk':chunkwords, 'surfacestart': chunk[1], 'surfacelength': chunk[2] , 'class':'entity'})
            else:
                erpredictions.append({'chunk':chunkwords, 'surfacestart': chunk[1], 'surfacelength': chunk[2] , 'class':'relation'})
        return erpredictions 
開發者ID:AskNowQA,項目名稱:EARL,代碼行數:38,代碼來源:ErPredictorES.py

示例10: detect_xss

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def detect_xss(self, payload, browser_object, user_screenshot_name,
                   injected_link):
        """Check the HTML source to determine if XSS payload was reflected."""
        # If fuzzy detection chosen, evaluate partial reflection of XSS
        # by tokenizing the HTML source and detecting parts of the payload
        # and source common to both.
        #
        # Other methods of scoring include fuzz.ratio(), fuzz.partial_ratio()
        # and fuzz.token_sort_ratio()
        partial_score = fuzz.token_set_ratio(
            payload.lower(), browser_object.html.lower())
        # Set the level of detection asked for by the user, e.g. Only detect
        # matches with score higher than 50% fuzzy detection
        fuzzy_level = self.user_args.FUZZY_DETECTION

        if payload.lower() in browser_object.html.lower():
            print Color.GREEN + "\n[+] XSS vulnerability found:" + \
                Color.END

            # If user set the --screen flag to target, capture screenshot of
            # payload
            if user_screenshot_name is not None:
                self.take_screenshot(user_screenshot_name,
                                     browser_object, self.screen_index)

            # Add link to list of all positive XSS hits
            self.xss_links.append(injected_link)
            print Color.BLUE + injected_link + Color.END
        # If user enabled fuzzy detection and partial score was larger than
        # fuzz level, add it to partials list and print results
        elif fuzzy_level and (partial_score >= fuzzy_level):
            print Color.YELLOW + \
                "\n[-] Partial XSS vulnerability found:" + Color.END
            print Color.BLUE + injected_link + Color.END
            self.xss_partials.append(injected_link)
            print "Detection score: %s" % partial_score
        else:
            print Color.RED + "\n[+] No XSS detected at: \n" + \
                Color.BLUE + injected_link + Color.END
            if (fuzzy_level):
                print "Detection score: %s" % partial_score 
開發者ID:shogunlab,項目名稱:shuriken,代碼行數:43,代碼來源:shuriken_xss.py

示例11: fuzzy_score_string

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def fuzzy_score_string(first_string, second_string):
    """Produce a similarity score for two strings (using Levenshtein distance).

    Params:
    - first_string: (type: string) first string.
    - second_string: (type: string) second string.

    Returns:
    - result: (type: int) score.
    """
    score = 0

    if len(first_string) < len(second_string):
        shorter, longer = (first_string, second_string)
        window_length = len(shorter)

        num_iterations = len(longer) - len(shorter) + 1

        for position in range(0, num_iterations):
            window = longer[position:position + window_length]
            l_ratio = Levenshtein.ratio(window, shorter) * 100

            if l_ratio > 60:
                result = statistics.mean(
                    [100 - Levenshtein.distance(window, shorter) * 15, l_ratio, l_ratio])

            else:
                result = l_ratio

            if result > score:
                score = result

    else:
        l_ratio = Levenshtein.ratio(first_string, second_string) * 100
        score = statistics.mean(
            [100 - Levenshtein.distance(first_string, second_string) * 15, l_ratio, l_ratio])

    simple = fuzz.ratio(first_string, second_string)
    partial = fuzz.partial_ratio(first_string, second_string)
    sort = fuzz.token_sort_ratio(first_string, second_string)
    set_ratio = fuzz.token_set_ratio(first_string, second_string)

    score = max([score, simple, partial, sort, set_ratio])

    if score < 75:
        score = 0

    return score * 0.85 
開發者ID:phage-nz,項目名稱:ph0neutria,代碼行數:50,代碼來源:string_utils.py

示例12: score_match

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def score_match(first_string, second_string, domain_score=False):
    """Produce a similarity score for two strings.

    Params:
    - first_string: (type: string) first string.
    - second_string: (type: string) second string.
    - domain_score: (type: bool) whether the comparison is of two domains.

    Returns:
    - result: (type: int) score.
    """
    score = 0

    if first_string == second_string:
        return SCORE_THRESHOLD_NORMAL

    if domain_score:
        if remove_tld(first_string) == remove_tld(second_string):
            return SCORE_THRESHOLD_NORMAL

    if second_string in first_string:
        return SCORE_THRESHOLD_NORMAL

    if domain_score:
        first_string = remove_tld(first_string)
        second_string = remove_tld(second_string)

    l_distance = Levenshtein.distance(first_string, second_string)
    fuzz_ratio = fuzz.token_sort_ratio(first_string, second_string)

    if l_distance <= 2:
        score = 50 + 25 * (2 - l_distance)

    elif fuzz_ratio > 80:
        score = fuzz_ratio - 25

    first_len = len(first_string)
    second_len = len(second_string)

    if first_len > second_len / 2 and first_len > 4:
        score += fuzzy_score_string(first_string, second_string)

    return score 
開發者ID:phage-nz,項目名稱:ph0neutria,代碼行數:45,代碼來源:string_utils.py

示例13: fuzzy_fuzzywuzzy_list

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def fuzzy_fuzzywuzzy_list(fuzz, user_input, qa_list, collection, topn=50):
    '''編輯距離,速度比較慢,比起匹配方法,能夠處理字符不一樣的問題'''

    start_time = time.time()
    # user_input_set = set([user_input_one for user_input_one in user_input])
    user_input_set = [user_input_one for user_input_one in user_input]


    same_char_list = []
    max_data = 0
    max_data_list = []
    count_collection_new_one = 0
    for collection_new_one in collection: # 獲取相同字符串多的問題
        count_same_char_one = len([x for x in user_input_set if x in collection_new_one])

        if count_same_char_one > 0:
            same_char_list.append((count_collection_new_one, count_same_char_one))
        if count_same_char_one > max_data:
            max_data_list.append(count_same_char_one)
            max_data = count_same_char_one
        count_collection_new_one += 1

    end_time1 = time.time()
    list_max_count = []
    len_max_data_list = len(max_data_list)
    for x in range(len_max_data_list):  # 獲取前20排名
        for k,l in same_char_list:
            if l == max_data_list[len_max_data_list -1 - x]:
                list_max_count.append(qa_list[k]) #問答重這裏取出來
        if len(list_max_count) >= 5000:
            list_max_count = list_max_count[0:5000]
            break

    end_time2 = time.time()

    # end_time1: 0.34090662002563477
    # end_time2: 0.4080846309661865

    # end_time1: 0.06417036056518555
    # end_time2: 0.08422374725341797

    # same_char_list.sort(key=lambda x: x[1], reverse=True)
    # if len(same_char_list) >= 20:
    #     same_char_list = same_char_list[0: 20]

    result =  process.extract(user_input, list_max_count, scorer=fuzz.token_set_ratio, limit=topn)
    end_time3 = time.time()

    # print('end_time1: ' + str(end_time1 - start_time))
    # print('end_time2: ' + str(end_time2 - start_time))
    # print('end_time3: ' + str(end_time3 - start_time))

    return result
    # [fuzz.WRatio, fuzz.QRatio,
    #  fuzz.token_set_ratio, fuzz.token_sort_ratio,
    #  fuzz.partial_token_set_ratio, fuzz.partial_token_sort_ratio,
    #  fuzz.UWRatio, fuzz.UQRatio] 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:59,代碼來源:chatbot_fuzzy.py

示例14: process_group

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def process_group(
        data, group, toc, toc_table, page_num, section,
        sectionid, html):
    """Retreives a group from the full data, and creates toc stuff

    Args:
        data (List): Full set of data containing all hosts
        group (String): String representing group to process
        toc (String): HTML for Table of Contents
        toc_table (String): HTML for Table in ToC
        page_num (int): Page number we're on in the report
        section (String): Display name of the group
        sectionid (String): Unique ID for ToC navigation
        html (String): HTML for current page of report

    Returns:
        List: Elements for category sorted and grouped
        String: HTML representing ToC
        String: HTML representing ToC Table
        String: HTML representing current report page
    """
    group_data = sorted([x for x in data if x.category == group], key=lambda k: str(k.page_title))

    grouped_elements = []
    if len(group_data) == 0:
        return grouped_elements, toc, toc_table, html
    if page_num == 0:
        toc += ("<li><a href=\"report.html#{0}\">{1} (Page 1)</a></li>").format(
            sectionid, section)
    else:
        toc += ("<li><a href=\"report_page{0}.html#{1}\">{2} (Page {0})</a></li>").format(
            str(page_num+1), sectionid, section)

    html += "<h2 id=\"{0}\">{1}</h2>".format(sectionid, section)
    unknowns = [x for x in group_data if x.page_title == 'Unknown']
    group_data = [x for x in group_data if x.page_title != 'Unknown']
    while len(group_data) > 0:
        test_element = group_data.pop(0)
        temp = [x for x in group_data if fuzz.token_sort_ratio(
            test_element.page_title, x.page_title) >= 70]
        temp.append(test_element)
        temp = sorted(temp, key=lambda k: k.page_title)
        grouped_elements.extend(temp)
        group_data = [x for x in group_data if fuzz.token_sort_ratio(
            test_element.page_title, x.page_title) < 70]

    grouped_elements.extend(unknowns)
    toc_table += ("<tr><td>{0}</td><td>{1}</td>").format(section,
                                                         str(len(grouped_elements)))
    return grouped_elements, toc, toc_table, html 
開發者ID:FortyNorthSecurity,項目名稱:EyeWitness,代碼行數:52,代碼來源:reporting.py

示例15: search_keybindings

# 需要導入模塊: from fuzzywuzzy import fuzz [as 別名]
# 或者: from fuzzywuzzy.fuzz import token_sort_ratio [as 別名]
def search_keybindings(software, search_key):
    """
    search
    :param software:
    :param search_key:
    """

    #importing fuzzywuzzy in this function improves load time for all yoda commands
    from fuzzywuzzy import fuzz


    SOFTWARE_FILE_PATH = get_software_file_path(software)
    matched_keys = []
    matched_actions = []
    matched_keys_actions_pairs = []
    if os.path.isfile(SOFTWARE_FILE_PATH):
        with open(SOFTWARE_FILE_PATH) as fin:
            contents = yaml.load(fin)
            entries = contents["entries"]
            # click.echo(entries)
            for entry in entries:
                act = entry["action"]
                key = entry["key"]
                # fr = fuzz.ratio(search_key,act)
                # fpr = fuzz.partial_ratio(search_key,act)
                ftsr = fuzz.token_sort_ratio(search_key, act)
                # print([fr,fpr,ftsr])
                # if any(fuzzy_match for fuzzy_match in [fr,fpr,ftsr] if fuzzy_match>=50):
                if ftsr >= 50:
                    # click.echo(entry)
                    matched_actions.append(act)
                    matched_keys.append(key)

            if matched_actions:
                matched_keys_actions_pairs = list(zip(matched_keys, matched_actions))

            ## Beautify matched output
            if matched_keys_actions_pairs:
                click.echo("Key Bindings:")
                click.echo("---------------------------------------")
                click.echo("     key       |          action       ")
                click.echo("---------------|-----------------------")
                for key, act in matched_keys_actions_pairs:
                    click.echo("       " + key + "       |       " + act)
            else:
                click.echo(chalk.red("No key matched, please try another option"))
    else:
        click.echo(
            chalk.red(
                "Software's config file doesn't exist. Type 'yoda dev keybindings --help'"
            )
        ) 
開發者ID:yoda-pa,項目名稱:yoda,代碼行數:54,代碼來源:dev.py


注:本文中的fuzzywuzzy.fuzz.token_sort_ratio方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。