當前位置: 首頁>>代碼示例>>Python>>正文


Python functools.reduce方法代碼示例

本文整理匯總了Python中functools.reduce方法的典型用法代碼示例。如果您正苦於以下問題:Python functools.reduce方法的具體用法?Python functools.reduce怎麽用?Python functools.reduce使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在functools的用法示例。


在下文中一共展示了functools.reduce方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: begin_read_samples

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def begin_read_samples(self):
        if self.cache:
            return

        self.input.begin_read_samples()
         # copy meta
        if self.output:
            self.output.meta = self.input.meta

        self.multipliers = {}
        self.rngs = {}

        def _mul(split):
            return reduce(operator.mul, map(lambda op: _get_multiplier(split, op), self.ops), 1)

        for split in SPLITS:
            self.multipliers[split] = _mul(split)
            self.cache[split] = self._calculate_num_samples(split)
            self.rngs[split] = self.cache[split] * [None]

        self.input.end_read_samples() 
開發者ID:mme,項目名稱:vergeml,代碼行數:23,代碼來源:loader.py

示例2: _apply_window

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def _apply_window(da, dims, window_type='hanning'):
    """Creating windows in dimensions dims."""

    if window_type not in ['hanning']:
        raise NotImplementedError("Only hanning window is supported for now.")

    numpy_win_func = getattr(np, window_type)

    if da.chunks:
        def dask_win_func(n):
            return dsar.from_delayed(
                delayed(numpy_win_func, pure=True)(n),
                (n,), float)
        win_func = dask_win_func
    else:
        win_func = numpy_win_func

    windows = [xr.DataArray(win_func(len(da[d])),
               dims=da[d].dims, coords=da[d].coords) for d in dims]

    return da * reduce(operator.mul, windows[::-1]) 
開發者ID:xgcm,項目名稱:xrft,代碼行數:23,代碼來源:xrft.py

示例3: simplify_source

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def simplify_source(s):
    s = map(lambda x: x.replace(',(1, 1),(0, 0),1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace('),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',1e-05,0.1,True),#BatchNorm2d',')'),s)
    s = map(lambda x: x.replace('),#BatchNorm2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace(',ceil_mode=False),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace('),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#AvgPool2d',')'),s)
    s = map(lambda x: x.replace(',ceil_mode=False),#AvgPool2d',')'),s)
    s = map(lambda x: x.replace(',bias=True)),#Linear',')), # Linear'),s)
    s = map(lambda x: x.replace(')),#Linear',')), # Linear'),s)

    s = map(lambda x: '{},\n'.format(x),s)
    s = map(lambda x: x[1:],s)
    s = reduce(lambda x,y: x+y, s)
    return s 
開發者ID:kipoi,項目名稱:models,代碼行數:22,代碼來源:convert_Basset_to_pytorch.py

示例4: row_norms

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def row_norms(ii, f=Ellipsis, squared=False):
    '''
    row_norms(ii) yields a potential function h(x) that calculates the vector norms of the rows of
      the matrix formed by [x[i] for i in ii] (ii is a matrix of parameter indices).
    row_norms(ii, f) yield a potential function h(x) equivalent to compose(row_norms(ii), f).
    '''
    try:
        (n,m) = ii
        # matrix shape given
        ii = np.reshape(np.arange(n*m), (n,m))
    except Exception: ii = np.asarray(ii)
    f = to_potential(f)
    if is_const_potential(f):
        q = flattest(f.c)
        q = np.sum([q[i]**2 for i in ii.T], axis=0)
        return PotentialConstant(q if squared else np.sqrt(q))
    F = reduce(lambda a,b: a + b, [part(Ellipsis, col)**2 for col in ii.T])
    F = compose(F, f)
    if not squared: F = sqrt(F)
    return F 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:22,代碼來源:core.py

示例5: col_norms

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def col_norms(ii, f=Ellipsis, squared=False):
    '''
    col_norms(ii) yields a potential function h(x) that calculates the vector norms of the columns
      of the matrix formed by [x[i] for i in ii] (ii is a matrix of parameter indices).
    col_norms(ii, f) yield a potential function h(x) equivalent to compose(col_norms(ii), f).
    '''
    try:
        (n,m) = ii
        # matrix shape given
        ii = np.reshape(np.arange(n*m), (n,m))
    except Exception: ii = np.asarray(ii)
    f = to_potential(f)
    if is_const_potential(f):
        q = flattest(f.c)
        q = np.sum([q[i]**2 for i in ii], axis=0)
        return PotentialConstant(q if squared else np.sqrt(q))
    F = reduce(lambda a,b: a + b, [part(Ellipsis, col)**2 for col in ii])
    F = compose(F, f)
    if not squared: F = sqrt(F)
    return F 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:22,代碼來源:core.py

示例6: cplus

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def cplus(*args):
    '''
    cplus(a, b...) returns the sum of all the values as a numpy array object. Like numpy's add
      function or a+b syntax, plus will thread over the latest dimension possible.

    Additionally, cplus works correctly with sparse arrays.
    '''
    n = len(args)
    if   n == 0: return np.asarray(0)
    elif n == 1: return np.asarray(args[0])
    elif n >  2: return reduce(plus, args)
    (a,b) = args
    if sps.issparse(a):
        if not sps.issparse(b):
            b = np.asarray(b)
            if len(b.shape) == 0: b = np.reshape(b, (1,1))
    elif sps.issparse(b):
        a = np.asarray(a)
        if len(a.shape) == 0: a = np.reshape(a, (1,1))
    else:
        a = np.asarray(a)
        b = np.asarray(b)
    return a + b 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例7: ctimes

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def ctimes(*args):
    '''
    ctimes(a, b...) returns the product of all the values as a numpy array object. Like numpy's
      multiply function or a*b syntax, times will thread over the latest dimension possible; thus
      if a.shape is (4,2) and b.shape is 2, times(a,b) is a equivalent to a * b.

    Unlike numpy's multiply function, ctimes works with sparse matrices and will reify them.
    '''
    n = len(args)
    if   n == 0: return np.asarray(0)
    elif n == 1: return np.asarray(args[0])
    elif n >  2: return reduce(plus, args)
    (a,b) = args
    if   sps.issparse(a): return a.multiply(b)
    elif sps.issparse(b): return b.multiply(a)
    else:                 return np.asarray(a) * b 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:18,代碼來源:core.py

示例8: _column_type

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def _column_type(strings, has_invisible=True):
    """The least generic type all column values are convertible to.

    >>> _column_type(["1", "2"]) is _int_type
    True
    >>> _column_type(["1", "2.3"]) is _float_type
    True
    >>> _column_type(["1", "2.3", "four"]) is _text_type
    True
    >>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type
    True
    >>> _column_type([None, "brux"]) is _text_type
    True
    >>> _column_type([1, 2, None]) is _int_type
    True
    >>> import datetime as dt
    >>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type
    True

    """
    types = [_type(s, has_invisible) for s in strings ]
    return reduce(_more_generic, types, int) 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:24,代碼來源:tabulate.py

示例9: feed_forward_categorical_fun

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def feed_forward_categorical_fun(action_space, config, observations):
  """Feed-forward categorical."""
  if not isinstance(action_space, gym.spaces.Discrete):
    raise ValueError("Expecting discrete action space.")
  flat_observations = tf.reshape(observations, [
      tf.shape(observations)[0], tf.shape(observations)[1],
      functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])
  with tf.variable_scope("network_parameters"):
    with tf.variable_scope("policy"):
      x = flat_observations
      for size in config.policy_layers:
        x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
      logits = tf.contrib.layers.fully_connected(x, action_space.n,
                                                 activation_fn=None)
    with tf.variable_scope("value"):
      x = flat_observations
      for size in config.value_layers:
        x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
      value = tf.contrib.layers.fully_connected(x, 1, None)[..., 0]
  policy = tf.contrib.distributions.Categorical(logits=logits)
  return NetworkOutput(policy, value, lambda a: a) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:rl.py

示例10: dense_bitwise_categorical_fun

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def dense_bitwise_categorical_fun(action_space, config, observations):
  """Dense network with bitwise input and categorical output."""
  del config
  obs_shape = common_layers.shape_list(observations)
  x = tf.reshape(observations, [-1] + obs_shape[2:])

  with tf.variable_scope("network_parameters"):
    with tf.variable_scope("dense_bitwise"):
      x = discretization.int_to_bit_embed(x, 8, 32)
      flat_x = tf.reshape(
          x, [obs_shape[0], obs_shape[1],
              functools.reduce(operator.mul, x.shape.as_list()[1:], 1)])

      x = tf.contrib.layers.fully_connected(flat_x, 256, tf.nn.relu)
      x = tf.contrib.layers.fully_connected(flat_x, 128, tf.nn.relu)

      logits = tf.contrib.layers.fully_connected(x, action_space.n,
                                                 activation_fn=None)

      value = tf.contrib.layers.fully_connected(
          x, 1, activation_fn=None)[..., 0]
      policy = tf.contrib.distributions.Categorical(logits=logits)

  return NetworkOutput(policy, value, lambda a: a) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:rl.py

示例11: gather_indices_2d

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def gather_indices_2d(x, block_shape, block_stride):
  """Getting gather indices."""
  # making an identity matrix kernel
  kernel = tf.eye(block_shape[0] * block_shape[1])
  kernel = reshape_range(kernel, 0, 1, [block_shape[0], block_shape[1], 1])
  # making indices [1, h, w, 1] to appy convs
  x_shape = common_layers.shape_list(x)
  indices = tf.range(x_shape[2] * x_shape[3])
  indices = tf.reshape(indices, [1, x_shape[2], x_shape[3], 1])
  indices = tf.nn.conv2d(
      tf.cast(indices, tf.float32),
      kernel,
      strides=[1, block_stride[0], block_stride[1], 1],
      padding="VALID")
  # making indices [num_blocks, dim] to gather
  dims = common_layers.shape_list(indices)[:3]
  if all([isinstance(dim, int) for dim in dims]):
    num_blocks = functools.reduce(operator.mul, dims, 1)
  else:
    num_blocks = tf.reduce_prod(dims)
  indices = tf.reshape(indices, [num_blocks, -1])
  return tf.cast(indices, tf.int32) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_attention.py

示例12: setup_critic_optimizer

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def setup_critic_optimizer(self):
        logger.info('setting up critic optimizer')
        normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
        self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
        if self.critic_l2_reg > 0.:
            critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
            for var in critic_reg_vars:
                logger.info('  regularizing: {}'.format(var.name))
            logger.info('  applying l2 regularization with {}'.format(self.critic_l2_reg))
            critic_reg = tc.layers.apply_regularization(
                tc.layers.l2_regularizer(self.critic_l2_reg),
                weights_list=critic_reg_vars
            )
            self.critic_loss += critic_reg
        critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
        critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
        logger.info('  critic shapes: {}'.format(critic_shapes))
        logger.info('  critic params: {}'.format(critic_nb_params))
        self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
        self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
            beta1=0.9, beta2=0.999, epsilon=1e-08) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:23,代碼來源:ddpg.py

示例13: normalize

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def normalize(md):
    '''Normalize anchors.'''
    def on_match(link):
        desc = link.group(1)
        old = link.group(2)
        href = (link.group(2)
                .lower()
                .replace('%20', '-')
                .replace(" ", "-")
                .replace("~", "")
                .replace(".", ""))
        old, new = f'[{desc}]({old})', f'[{desc}]({href})'
        print(old, new)
        return old, new

    replacers = set((on_match(x) for x in re.finditer(r'\[([^\]\[]*)\]\((#[^\)]*)\)', md)))
    return ft.reduce(lambda md, x: md.replace(x[0], x[1]), replacers, md) 
開發者ID:SimonWoodburyForget,項目名稱:mindustry-modding,代碼行數:19,代碼來源:to_wiki.py

示例14: extract

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def extract(iid, bindir):
    print('Extracting binaries......')
    query = '''select filename from object_to_image where iid=''' + iid + ''' and score>0 and (mime='application/x-executable; charset=binary' or mime='application/x-object; charset=binary' or mime='application/x-sharedlib; charset=binary') order by score DESC;'''
    wanted = dbquery(query)
    wanted = reduce((lambda a, b: a + b), wanted)
    wanted = map((lambda a: '.' + a), wanted)
    wanted = reduce((lambda a, b: a + ' ' + b), wanted)
    cmd = 'tar xf ' + bindir + '/../../../../images/' + iid + '.tar.gz -C ' + bindir + ' ' + wanted
    subprocess.run([cmd], shell=True)

    print('Extracting library links......')
    query = '''select filename from object_to_image where iid=''' + iid + ''' and regular_file='f';'''
    wanted = dbquery(query)
    wanted = reduce((lambda a, b: a + b), wanted)
    wanted = filter((lambda a: 'lib' in a), wanted)
    wanted = map((lambda a: '.' + a), wanted)
    wanted = reduce((lambda a, b: a + ' ' + b), wanted)
    cmd = 'tar xf ' + bindir + '/../../../../images/' + iid + '.tar.gz -C ' + bindir + ' ' + wanted
    subprocess.run([cmd], shell=True) 
開發者ID:kyechou,項目名稱:firmanal,代碼行數:21,代碼來源:afl.py

示例15: _get_r

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import reduce [as 別名]
def _get_r(s, snesc):
    # R^dag \tilde{S} R = S
    # R = S^{-1/2} [S^{-1/2}\tilde{S}S^{-1/2}]^{-1/2} S^{1/2}
    w, v = numpy.linalg.eigh(s)
    idx = w > 1e-14
    v = v[:,idx]
    w_sqrt = numpy.sqrt(w[idx])
    w_invsqrt = 1 / w_sqrt

    # eigenvectors of S as the new basis
    snesc = reduce(numpy.dot, (v.conj().T, snesc, v))
    r_mid = numpy.einsum('i,ij,j->ij', w_invsqrt, snesc, w_invsqrt)
    w1, v1 = numpy.linalg.eigh(r_mid)
    idx1 = w1 > 1e-14
    v1 = v1[:,idx1]
    r_mid = numpy.dot(v1/numpy.sqrt(w1[idx1]), v1.conj().T)
    r = numpy.einsum('i,ij,j->ij', w_invsqrt, r_mid, w_sqrt)
    # Back transform to AO basis
    r = reduce(numpy.dot, (v, r, v.conj().T))
    return r 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:22,代碼來源:x2c.py


注:本文中的functools.reduce方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。