當前位置: 首頁>>代碼示例>>Python>>正文


Python functools.partial方法代碼示例

本文整理匯總了Python中functools.partial方法的典型用法代碼示例。如果您正苦於以下問題:Python functools.partial方法的具體用法?Python functools.partial怎麽用?Python functools.partial使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在functools的用法示例。


在下文中一共展示了functools.partial方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_plugins

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def load_plugins():
    here = os.path.abspath(os.path.dirname(__file__))
    get_path = partial(os.path.join, here)
    plugin_dir = get_path('plugins')

    plugin_base = PluginBase(
        package='wafw00f.plugins', searchpath=[plugin_dir]
    )
    plugin_source = plugin_base.make_plugin_source(
        searchpath=[plugin_dir], persist=True
    )

    plugin_dict = {}
    for plugin_name in plugin_source.list_plugins():
        plugin_dict[plugin_name] = plugin_source.load_plugin(plugin_name)

    return plugin_dict 
開發者ID:EnableSecurity,項目名稱:wafw00f,代碼行數:19,代碼來源:manager.py

示例2: tasks

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def tasks(args):
    list_clusters = clients.ecs.get_paginator("list_clusters")
    list_tasks = clients.ecs.get_paginator("list_tasks")

    def list_tasks_worker(worker_args):
        cluster, status = worker_args
        return cluster, status, list(paginate(list_tasks, cluster=cluster, desiredStatus=status))

    def describe_tasks_worker(t, cluster=None):
        return clients.ecs.describe_tasks(cluster=cluster, tasks=t)["tasks"] if t else []

    task_descs = []
    if args.clusters is None:
        args.clusters = [__name__.replace(".", "_")] if args.tasks else list(paginate(list_clusters))
    if args.tasks:
        task_descs = describe_tasks_worker(args.tasks, cluster=args.clusters[0])
    else:
        with ThreadPoolExecutor() as executor:
            for cluster, status, tasks in executor.map(list_tasks_worker, product(args.clusters, args.desired_status)):
                worker = partial(describe_tasks_worker, cluster=cluster)
                descs = executor.map(worker, (tasks[pos:pos + 100] for pos in range(0, len(tasks), 100)))
                task_descs += sum(descs, [])
    page_output(tabulate(task_descs, args)) 
開發者ID:kislyuk,項目名稱:aegea,代碼行數:25,代碼來源:ecs.py

示例3: get_arg_serializer

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def get_arg_serializer(arg_type):
    if isinstance(arg_type, GraphQLNonNull):
        return get_arg_serializer(arg_type.of_type)
    if isinstance(arg_type, GraphQLInputField):
        return get_arg_serializer(arg_type.type)
    if isinstance(arg_type, GraphQLInputObjectType):
        serializers = {k: get_arg_serializer(v) for k, v in arg_type.fields.items()}
        return lambda value: ObjectValueNode(
            fields=FrozenList(
                ObjectFieldNode(name=NameNode(value=k), value=serializers[k](v))
                for k, v in value.items()
            )
        )
    if isinstance(arg_type, GraphQLList):
        inner_serializer = get_arg_serializer(arg_type.of_type)
        return partial(serialize_list, inner_serializer)
    if isinstance(arg_type, GraphQLEnumType):
        return lambda value: EnumValueNode(value=arg_type.serialize(value))
    return lambda value: ast_from_value(arg_type.serialize(value), arg_type) 
開發者ID:graphql-python,項目名稱:gql,代碼行數:21,代碼來源:dsl.py

示例4: subscribe

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def subscribe(self, channel, callback=None, priority=None):
        """Add the given callback at the given channel (if not present).

        If callback is None, return a partial suitable for decorating
        the callback.
        """
        if callback is None:
            return functools.partial(
                self.subscribe,
                channel,
                priority=priority,
            )

        ch_listeners = self.listeners.setdefault(channel, set())
        ch_listeners.add(callback)

        if priority is None:
            priority = getattr(callback, 'priority', 50)
        self._priorities[(channel, callback)] = priority 
開發者ID:cherrypy,項目名稱:cherrypy,代碼行數:21,代碼來源:wspbus.py

示例5: multi_apply

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def multi_apply(func, *args, **kwargs):
    """Apply function to a list of arguments.

    Note:
        This function applies the ``func`` to multiple inputs and
            map the multiple outputs of the ``func`` into different
            list. Each list contains the same type of outputs corresponding
            to different inputs.

    Args:
        func (Function): A function that will be applied to a list of
            arguments

    Returns:
        tuple(list): A tuple containing multiple list, each list contains
            a kind of returned results by the function
    """
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results))) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:22,代碼來源:misc.py

示例6: fprop

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def fprop(self, x, **kwargs):
        del kwargs
        my_conv = functools.partial(tf.layers.conv2d,
                                    kernel_size=3,
                                    strides=2,
                                    padding='valid',
                                    activation=tf.nn.relu,
                                    kernel_initializer=HeReLuNormalInitializer)
        my_dense = functools.partial(
            tf.layers.dense, kernel_initializer=HeReLuNormalInitializer)

        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            for depth in [96, 256, 384, 384, 256]:
                x = my_conv(x, depth)
            y = tf.layers.flatten(x)
            y = my_dense(y, 4096, tf.nn.relu)
            y = fc7 = my_dense(y, 4096, tf.nn.relu)
            y = my_dense(y, 1000)
            return {'fc7': fc7,
                    self.O_LOGITS: y,
                    self.O_PROBS: tf.nn.softmax(logits=y)} 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:model.py

示例7: run

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def run(self):
        self.monitor.start()
        notifier = poll.Poll.for_events(
            (self.monitor, 'r'), (self._stop_event.source, 'r'))
        while True:
            for file_descriptor, event in eintr_retry_call(notifier.poll):
                if file_descriptor == self._stop_event.source.fileno():
                    # in case of a stop event, close our pipe side, and
                    # return from the thread
                    self._stop_event.source.close()
                    return
                elif file_descriptor == self.monitor.fileno() and event == 'r':
                    read_device = partial(eintr_retry_call, self.monitor.poll, timeout=0)
                    for device in iter(read_device, None):
                        self._callback(device)
                else:
                    raise EnvironmentError('Observed monitor hung up') 
開發者ID:mbusb,項目名稱:multibootusb,代碼行數:19,代碼來源:monitor.py

示例8: _create_evaluation_spec

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def _create_evaluation_spec(params, audio_adapter, audio_path):
    """ Setup eval spec evaluating ever n seconds

    :param params: TF params to build spec from.
    :returns: Built evaluation spec.
    """
    input_fn = partial(
        get_validation_dataset,
        params,
        audio_adapter,
        audio_path)
    evaluation_spec = tf.estimator.EvalSpec(
        input_fn=input_fn,
        steps=None,
        throttle_secs=params['throttle_secs'])
    return evaluation_spec 
開發者ID:deezer,項目名稱:spleeter,代碼行數:18,代碼來源:train.py

示例9: __init__

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def __init__(self, learning_rate, max_iteration_steps, seed=None):
        """Initializes a `Generator` that builds `SimpleCNNs`.

        Args:
          learning_rate: The float learning rate to use.
          max_iteration_steps: The number of steps per iteration.
          seed: The random seed.

        Returns:
          An instance of `Generator`.
        """
        self._seed = seed
        self._cnn_builder_fn = functools.partial(
            SimpleCNNBuilder,
            learning_rate=learning_rate,
            max_iteration_steps=max_iteration_steps) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:18,代碼來源:2_simple_mnist.py

示例10: __init__

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def __init__(self, input_shape, num_hidden,
                 h2h_kernel=(3, 3), h2h_dilate=(1, 1),
                 i2h_kernel=(3, 3), i2h_stride=(1, 1),
                 i2h_pad=(1, 1), i2h_dilate=(1, 1),
                 i2h_weight_initializer=None, h2h_weight_initializer=None,
                 i2h_bias_initializer='zeros', h2h_bias_initializer='zeros',
                 activation=functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2),
                 prefix='ConvRNN_', params=None, conv_layout='NCHW'):
        super(ConvRNNCell, self).__init__(input_shape=input_shape, num_hidden=num_hidden,
                                          h2h_kernel=h2h_kernel, h2h_dilate=h2h_dilate,
                                          i2h_kernel=i2h_kernel, i2h_stride=i2h_stride,
                                          i2h_pad=i2h_pad, i2h_dilate=i2h_dilate,
                                          i2h_weight_initializer=i2h_weight_initializer,
                                          h2h_weight_initializer=h2h_weight_initializer,
                                          i2h_bias_initializer=i2h_bias_initializer,
                                          h2h_bias_initializer=h2h_bias_initializer,
                                          activation=activation, prefix=prefix,
                                          params=params, conv_layout=conv_layout) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:rnn_cell.py

示例11: main

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def main(unused_argv):
  assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
  assert FLAGS.eval_dir, '`eval_dir` is missing.'
  if FLAGS.pipeline_config_path:
    model_config, eval_config, input_config = get_configs_from_pipeline_file()
  else:
    model_config, eval_config, input_config = get_configs_from_multiple_files()

  model_fn = functools.partial(
      model_builder.build,
      model_config=model_config,
      is_training=False)

  create_input_dict_fn = functools.partial(
      input_reader_builder.build,
      input_config)

  label_map = label_map_util.load_labelmap(input_config.label_map_path)
  max_num_classes = max([item.id for item in label_map.item])
  categories = label_map_util.convert_label_map_to_categories(
      label_map, max_num_classes)

  evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
                     FLAGS.checkpoint_dir, FLAGS.eval_dir) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:eval.py

示例12: _build_randomization_function_dict

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def _build_randomization_function_dict(self, env):
    func_dict = {}
    func_dict["mass"] = functools.partial(
        self._randomize_masses, minitaur=env.minitaur)
    func_dict["inertia"] = functools.partial(
        self._randomize_inertia, minitaur=env.minitaur)
    func_dict["latency"] = functools.partial(
        self._randomize_latency, minitaur=env.minitaur)
    func_dict["joint friction"] = functools.partial(
        self._randomize_joint_friction, minitaur=env.minitaur)
    func_dict["motor friction"] = functools.partial(
        self._randomize_motor_friction, minitaur=env.minitaur)
    func_dict["restitution"] = functools.partial(
        self._randomize_contact_restitution, minitaur=env.minitaur)
    func_dict["lateral friction"] = functools.partial(
        self._randomize_contact_friction, minitaur=env.minitaur)
    func_dict["battery"] = functools.partial(
        self._randomize_battery_level, minitaur=env.minitaur)
    func_dict["motor strength"] = functools.partial(
        self._randomize_motor_strength, minitaur=env.minitaur)
    # Settinmg control step needs access to the environment.
    func_dict["control step"] = functools.partial(
        self._randomize_control_step, env=env)
    return func_dict 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:26,代碼來源:minitaur_env_randomizer_from_config.py

示例13: step

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def step(self, action, blocking=True):
    """Step the environment.

    Args:
      action: The action to apply to the environment.
      blocking: Whether to wait for the result.

    Returns:
      Transition tuple when blocking, otherwise callable that returns the
      transition tuple.
    """
    self._conn.send((self._ACTION, action))
    if blocking:
      return self._receive(self._TRANSITION)
    else:
      return functools.partial(self._receive, self._TRANSITION) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:18,代碼來源:wrappers.py

示例14: load_textset

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def load_textset(n_jobs, use_gpu, pin_memory, corpus, text):

    # Text tokenizer
    tokenizer = load_text_encoder(**text)
    # Dataset
    tr_set, dv_set, tr_loader_bs, dv_loader_bs, data_msg = create_textset(
        tokenizer, **corpus)
    collect_tr = partial(collect_text_batch, mode='train')
    collect_dv = partial(collect_text_batch, mode='dev')
    # Dataloader (Text data stored in RAM, no need num_workers)
    tr_set = DataLoader(tr_set, batch_size=tr_loader_bs, shuffle=True, drop_last=True, collate_fn=collect_tr,
                        num_workers=0, pin_memory=use_gpu)
    dv_set = DataLoader(dv_set, batch_size=dv_loader_bs, shuffle=False, drop_last=False, collate_fn=collect_dv,
                        num_workers=0, pin_memory=pin_memory)

    # Messages to show
    data_msg.append('I/O spec.  | Token type = {}\t| Vocab size = {}'
                    .format(tokenizer.token_type, tokenizer.vocab_size))

    return tr_set, dv_set, tokenizer.vocab_size, tokenizer, data_msg 
開發者ID:Alexander-H-Liu,項目名稱:End-to-end-ASR-Pytorch,代碼行數:22,代碼來源:data.py

示例15: set_alert_callback

# 需要導入模塊: import functools [as 別名]
# 或者: from functools import partial [as 別名]
def set_alert_callback(self, callback):
        """
        Args:
            callback (func): called when alert popup
        
        Example of callback:

            def callback(session):
                session.alert.accept()
        """
        if callable(callback):
            self.http.alert_callback = functools.partial(callback, self)
        else:
            self.http.alert_callback = None

    #Not working
    #def get_clipboard(self):
    #    return self.http.post("/wda/getPasteboard").value

    # Not working
    #def siri_activate(self, text):
    #    self.http.post("/wda/siri/activate", {"text": text}) 
開發者ID:openatx,項目名稱:facebook-wda,代碼行數:24,代碼來源:__init__.py


注:本文中的functools.partial方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。