當前位置: 首頁>>代碼示例>>Python>>正文


Python transformers.Mapping方法代碼示例

本文整理匯總了Python中fuel.transformers.Mapping方法的典型用法代碼示例。如果您正苦於以下問題:Python transformers.Mapping方法的具體用法?Python transformers.Mapping怎麽用?Python transformers.Mapping使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fuel.transformers的用法示例。


在下文中一共展示了transformers.Mapping方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_datastream

# 需要導入模塊: from fuel import transformers [as 別名]
# 或者: from fuel.transformers import Mapping [as 別名]
def setup_datastream(path, vocab_file, config):
    ds = QADataset(path, vocab_file, config.n_entities, need_sep_token=config.concat_ctx_and_question)
    it = QAIterator(path, shuffle=config.shuffle_questions)

    stream = DataStream(ds, iteration_scheme=it)

    if config.concat_ctx_and_question:
        stream = ConcatCtxAndQuestion(stream, config.concat_question_before, ds.reverse_vocab['<SEP>'])

    # Sort sets of multiple batches to make batches of similar sizes
    stream = Batch(stream, iteration_scheme=ConstantScheme(config.batch_size * config.sort_batch_count))
    comparison = _balanced_batch_helper(stream.sources.index('question' if config.concat_ctx_and_question else 'context'))
    stream = Mapping(stream, SortMapping(comparison))
    stream = Unpack(stream)

    stream = Batch(stream, iteration_scheme=ConstantScheme(config.batch_size))
    stream = Padding(stream, mask_sources=['context', 'question', 'candidates'], mask_dtype='int32')

    return ds, stream 
開發者ID:thomasmesnard,項目名稱:DeepMind-Teaching-Machines-to-Read-and-Comprehend,代碼行數:21,代碼來源:data.py

示例2: setup_datastream

# 需要導入模塊: from fuel import transformers [as 別名]
# 或者: from fuel.transformers import Mapping [as 別名]
def setup_datastream(path, batch_size, sort_batch_count, valid=False):
    A = numpy.load(os.path.join(path, ('valid_x_raw.npy' if valid else 'train_x_raw.npy')))
    B = numpy.load(os.path.join(path, ('valid_phn.npy' if valid else 'train_phn.npy')))
    C = numpy.load(os.path.join(path, ('valid_seq_to_phn.npy' if valid else 'train_seq_to_phn.npy')))

    D = [B[x[0]:x[1], 2] for x in C]

    ds = IndexableDataset({'input': A, 'output': D})
    stream = DataStream(ds, iteration_scheme=ShuffledExampleScheme(len(A)))

    stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size * sort_batch_count))
    comparison = _balanced_batch_helper(stream.sources.index('input'))
    stream = Mapping(stream, SortMapping(comparison))
    stream = Unpack(stream)

    stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size, num_examples=len(A)))
    stream = Padding(stream, mask_sources=['input', 'output'])

    return ds, stream 
開發者ID:thomasmesnard,項目名稱:CTC-LSTM,代碼行數:21,代碼來源:timit.py

示例3: get_stream

# 需要導入模塊: from fuel import transformers [as 別名]
# 或者: from fuel.transformers import Mapping [as 別名]
def get_stream(hdf5_file, which_set, batch_size=None):
    dataset = H5PYDataset(
        hdf5_file, which_sets=(which_set,), load_in_memory=True)
    if batch_size == None:
        batch_size = dataset.num_examples
    stream = DataStream(dataset=dataset, iteration_scheme=ShuffledScheme(
        examples=dataset.num_examples, batch_size=batch_size))
    # Required because Recurrent bricks receive as input [sequence, batch,
    # features]
    return Mapping(stream, transpose_stream) 
開發者ID:johnarevalo,項目名稱:blocks-char-rnn,代碼行數:12,代碼來源:utils.py

示例4: wrap_stream

# 需要導入模塊: from fuel import transformers [as 別名]
# 或者: from fuel.transformers import Mapping [as 別名]
def wrap_stream(self, stream):
        return Mapping(stream, Invoke(self, 'apply')) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:4,代碼來源:preprocessing.py

示例5: test_default_transformer

# 需要導入模塊: from fuel import transformers [as 別名]
# 或者: from fuel.transformers import Mapping [as 別名]
def test_default_transformer(self):
        class DoublingDataset(IterableDataset):
            def apply_default_transformer(self, stream):
                return Mapping(
                    stream, lambda sources: tuple(2 * s for s in sources))
        dataset = DoublingDataset(self.data)
        stream = dataset.apply_default_transformer(DataStream(dataset))
        assert_equal(list(stream.get_epoch_iterator()), [(2,), (4,), (6,)]) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:10,代碼來源:test_datasets.py


注:本文中的fuel.transformers.Mapping方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。