當前位置: 首頁>>代碼示例>>Python>>正文


Python schemes.SequentialScheme方法代碼示例

本文整理匯總了Python中fuel.schemes.SequentialScheme方法的典型用法代碼示例。如果您正苦於以下問題:Python schemes.SequentialScheme方法的具體用法?Python schemes.SequentialScheme怎麽用?Python schemes.SequentialScheme使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fuel.schemes的用法示例。


在下文中一共展示了schemes.SequentialScheme方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_imgs_seq

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def load_imgs_seq(ntrain=None, ntest=None, batch_size=128, data_file=None):
    t = time()
    print('LOADING DATASET...')
    path = os.path.join(data_file)
    tr_data = H5PYDataset(path, which_sets=('train',))
    te_data = H5PYDataset(path, which_sets=('test',))

    if ntrain is None:
        ntrain = tr_data.num_examples
    if ntest is None:
        ntest = te_data.num_examples

    tr_scheme = SequentialScheme(examples=ntrain, batch_size=batch_size)
    tr_stream = DataStream(tr_data, iteration_scheme=tr_scheme)

    te_scheme = SequentialScheme(examples=ntest, batch_size=batch_size)
    te_stream = DataStream(te_data, iteration_scheme=te_scheme)

    print('name = %s, ntrain = %d, ntest = %d' % (data_file, ntrain, ntest))
    print('%.2f seconds to load data' % (time() - t))

    return tr_data, te_data, tr_stream, te_stream, ntrain, ntest 
開發者ID:junyanz,項目名稱:iGAN,代碼行數:24,代碼來源:load.py

示例2: faces

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def faces(ntrain=None, nval=None, ntest=None, batch_size=128):
    path = os.path.join(data_dir, 'faces_364293_128px.hdf5')
    tr_data = H5PYDataset(path, which_sets=('train',))
    te_data = H5PYDataset(path, which_sets=('test',))

    if ntrain is None:
        ntrain = tr_data.num_examples
    if ntest is None:
        ntest = te_data.num_examples
    if nval is None:
        nval = te_data.num_examples

    tr_scheme = ShuffledScheme(examples=ntrain, batch_size=batch_size)
    tr_stream = DataStream(tr_data, iteration_scheme=tr_scheme)

    te_scheme = SequentialScheme(examples=ntest, batch_size=batch_size)
    te_stream = DataStream(te_data, iteration_scheme=te_scheme)

    val_scheme = SequentialScheme(examples=nval, batch_size=batch_size)
    val_stream = DataStream(tr_data, iteration_scheme=val_scheme)
    return tr_data, te_data, tr_stream, val_stream, te_stream 
開發者ID:Newmu,項目名稱:dcgan_code,代碼行數:23,代碼來源:load.py

示例3: test_mnist_train

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_mnist_train():
    skip_if_not_available(datasets=['mnist.hdf5'])

    dataset = MNIST(('train',), load_in_memory=False)
    handle = dataset.open()
    data, labels = dataset.get_data(handle, slice(0, 10))
    assert data.dtype == 'uint8'
    assert data.shape == (10, 1, 28, 28)
    assert labels.shape == (10, 1)
    known = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170, 253,
                         253, 253, 253, 253, 225, 172, 253, 242, 195,  64, 0,
                         0, 0, 0])
    assert_allclose(data[0][0][6], known)
    assert labels[0][0] == 5
    assert dataset.num_examples == 60000
    dataset.close(handle)

    stream = DataStream.default_stream(
        dataset, iteration_scheme=SequentialScheme(10, 10))
    data = next(stream.get_epoch_iterator())[0]
    assert data.min() >= 0.0 and data.max() <= 1.0
    assert data.dtype == config.floatX 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:24,代碼來源:test_mnist.py

示例4: test_mnist_test

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_mnist_test():
    skip_if_not_available(datasets=['mnist.hdf5'])

    dataset = MNIST(('test',), load_in_memory=False)
    handle = dataset.open()
    data, labels = dataset.get_data(handle, slice(0, 10))
    assert data.dtype == 'uint8'
    assert data.shape == (10, 1, 28, 28)
    assert labels.shape == (10, 1)
    known = numpy.array([0, 0, 0, 0, 0, 0, 84, 185, 159, 151, 60, 36, 0, 0, 0,
                         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    assert_allclose(data[0][0][7], known)
    assert labels[0][0] == 7
    assert dataset.num_examples == 10000
    dataset.close(handle)

    stream = DataStream.default_stream(
        dataset, iteration_scheme=SequentialScheme(10, 10))
    data = next(stream.get_epoch_iterator())[0]
    assert data.min() >= 0.0 and data.max() <= 1.0
    assert data.dtype == config.floatX 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:23,代碼來源:test_mnist.py

示例5: epoch

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def epoch(self, subset, batch_size, shuffle=False):
        dataset = self.subset[subset]
        handle = dataset.open()
        dset_size = self.h5file.attrs['split'][
            dict(train=0, valid=1, test=2)[subset]][3]
        indices = np.arange(
            ((dset_size + batch_size - 1) // batch_size)*batch_size)
        indices %= dset_size
        if shuffle:
            np.random.shuffle(indices)
        req_itor = SequentialScheme(
            examples=indices, batch_size=batch_size).get_request_iterator()
        for req in req_itor:
            data_pt = dataset.get_data(handle, req)
            max_len = max(map(len, data_pt[0]))
            spectra_li = [utils.random_zeropad(
                x, max_len - len(x), axis=-2)
                for x in data_pt[0]]
            spectra = np.stack(spectra_li)
            yield (spectra,)
        dataset.close(handle) 
開發者ID:khaotik,項目名稱:DaNet-Tensorflow,代碼行數:23,代碼來源:wsj0.py

示例6: test_mean_aggregator

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_mean_aggregator():
    num_examples = 4
    batch_size = 2

    features = numpy.array([[0, 3],
                           [2, 9],
                           [2, 4],
                           [5, 1]], dtype=theano.config.floatX)

    dataset = IndexableDataset(OrderedDict([('features', features)]))

    data_stream = DataStream(dataset,
                             iteration_scheme=SequentialScheme(num_examples,
                                                               batch_size))

    x = tensor.matrix('features')
    y = (x**2).mean(axis=0)
    y.name = 'y'
    z = y.sum()
    z.name = 'z'

    y.tag.aggregation_scheme = Mean(y, 1.)
    z.tag.aggregation_scheme = Mean(z, 1.)

    assert_allclose(DatasetEvaluator([y]).evaluate(data_stream)['y'],
                    numpy.array([8.25, 26.75], dtype=theano.config.floatX))
    assert_allclose(DatasetEvaluator([z]).evaluate(data_stream)['z'],
                    numpy.array([35], dtype=theano.config.floatX)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:30,代碼來源:test_aggregation.py

示例7: test_axis_labels_on_produces_batches

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_axis_labels_on_produces_batches(self):
        dataset = IndexableDataset(numpy.eye(2))
        axis_labels = {'data': ('batch', 'features')}
        dataset.axis_labels = axis_labels
        stream = DataStream(dataset, iteration_scheme=SequentialScheme(2, 2))
        assert_equal(stream.axis_labels, axis_labels) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:8,代碼來源:test_streams.py

示例8: test_cifar100

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_cifar100():
    train = CIFAR100(('train',), load_in_memory=False)
    assert train.num_examples == 50000
    handle = train.open()
    coarse_labels, features, fine_labels = train.get_data(handle,
                                                          slice(49990, 50000))

    assert features.shape == (10, 3, 32, 32)
    assert coarse_labels.shape == (10, 1)
    assert fine_labels.shape == (10, 1)
    train.close(handle)

    test = CIFAR100(('test',), load_in_memory=False)
    handle = test.open()
    coarse_labels, features, fine_labels = test.get_data(handle,
                                                         slice(0, 10))

    assert features.shape == (10, 3, 32, 32)
    assert coarse_labels.shape == (10, 1)
    assert fine_labels.shape == (10, 1)

    assert features.dtype == numpy.uint8
    assert coarse_labels.dtype == numpy.uint8
    assert fine_labels.dtype == numpy.uint8

    test.close(handle)

    stream = DataStream.default_stream(
        test, iteration_scheme=SequentialScheme(10, 10))
    data = next(stream.get_epoch_iterator())[1]

    assert data.min() >= 0.0 and data.max() <= 1.0
    assert data.dtype == config.floatX

    assert_raises(ValueError, CIFAR100, ('valid',)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:37,代碼來源:test_cifar100.py

示例9: test_in_memory

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_in_memory():
    skip_if_not_available(datasets=['mnist.hdf5'])
    # Load MNIST and get two batches
    mnist = MNIST(('train',), load_in_memory=True)
    data_stream = DataStream(mnist, iteration_scheme=SequentialScheme(
        examples=mnist.num_examples, batch_size=256))
    epoch = data_stream.get_epoch_iterator()
    for i, (features, targets) in enumerate(epoch):
        if i == 1:
            break
    handle = mnist.open()
    known_features, _ = mnist.get_data(handle, slice(256, 512))
    mnist.close(handle)
    assert numpy.all(features == known_features)

    # Pickle the epoch and make sure that the data wasn't dumped
    with tempfile.NamedTemporaryFile(delete=False) as f:
        filename = f.name
        cPickle.dump(epoch, f)
    assert os.path.getsize(filename) < 1024 * 1024  # Less than 1MB

    # Reload the epoch and make sure that the state was maintained
    del epoch
    with open(filename, 'rb') as f:
        epoch = cPickle.load(f)
    features, targets = next(epoch)
    handle = mnist.open()
    known_features, _ = mnist.get_data(handle, slice(512, 768))
    mnist.close(handle)
    assert numpy.all(features == known_features) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:32,代碼來源:test_serialization.py

示例10: test_ngram_stream_raises_error_on_batch_stream

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_ngram_stream_raises_error_on_batch_stream():
    sentences = [list(numpy.random.randint(10, size=sentence_length))
                 for sentence_length in [3, 5, 7]]
    stream = DataStream(
        IndexableDataset(sentences), iteration_scheme=SequentialScheme(3, 1))
    assert_raises(ValueError, NGrams, 4, stream) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:8,代碼來源:test_text.py

示例11: test_cifar10

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_cifar10():
    train = CIFAR10(('train',), load_in_memory=False)
    assert train.num_examples == 50000
    handle = train.open()
    features, targets = train.get_data(handle, slice(49990, 50000))
    assert features.shape == (10, 3, 32, 32)
    assert targets.shape == (10, 1)
    train.close(handle)

    test = CIFAR10(('test',), load_in_memory=False)
    handle = test.open()
    features, targets = test.get_data(handle, slice(0, 10))
    assert features.shape == (10, 3, 32, 32)
    assert targets.shape == (10, 1)
    assert features.dtype == numpy.uint8
    assert targets.dtype == numpy.uint8
    test.close(handle)

    stream = DataStream.default_stream(
        test, iteration_scheme=SequentialScheme(10, 10))
    data = next(stream.get_epoch_iterator())[0]
    assert data.min() >= 0.0 and data.max() <= 1.0
    assert data.dtype == config.floatX

    assert_raises(ValueError, CIFAR10, ('valid',))

    assert_raises(ValueError, CIFAR10,
                  ('train',), subset=slice(50000, 60000)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:30,代碼來源:test_cifar10.py

示例12: test_data_stream_pickling

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def test_data_stream_pickling(self):
        stream = DataStream(H5PYDataset(self.h5file, which_sets=('train',)),
                            iteration_scheme=SequentialScheme(100, 10))
        cPickle.loads(cPickle.dumps(stream))
        stream.close() 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:7,代碼來源:test_hdf5.py

示例13: fuel_data_to_list

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def fuel_data_to_list(fuel_data, shuffle):
    if(shuffle):
        scheme = ShuffledScheme(fuel_data.num_examples, fuel_data.num_examples)
    else:
        scheme = SequentialScheme(fuel_data.num_examples, fuel_data.num_examples)
    fuel_data_stream = DataStream.default_stream(fuel_data, iteration_scheme=scheme)
    return next(fuel_data_stream.get_epoch_iterator()) 
開發者ID:dribnet,項目名稱:kerosene,代碼行數:9,代碼來源:dataset.py

示例14: get_stream

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def get_stream():
    return DataStream(
        MNIST(('train',)), iteration_scheme=SequentialScheme(1500, 500)) 
開發者ID:mila-iqia,項目名稱:fuel,代碼行數:5,代碼來源:test_server.py

示例15: _test_dataset

# 需要導入模塊: from fuel import schemes [as 別名]
# 或者: from fuel.schemes import SequentialScheme [as 別名]
def _test_dataset():
    train = DogsVsCats(('train',))
    assert train.num_examples == 25000
    assert_raises(ValueError, DogsVsCats, ('valid',))

    test = DogsVsCats(('test',))
    stream = DataStream.default_stream(
        test, iteration_scheme=SequentialScheme(10, 10))
    data = next(stream.get_epoch_iterator())[0][0]
    assert data.dtype.kind == 'f' 
開發者ID:mila-iqia,項目名稱:fuel,代碼行數:12,代碼來源:test_dogs_vs_cats.py


注:本文中的fuel.schemes.SequentialScheme方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。