本文整理匯總了Python中fuel.datasets.IndexableDataset方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.IndexableDataset方法的具體用法?Python datasets.IndexableDataset怎麽用?Python datasets.IndexableDataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fuel.datasets
的用法示例。
在下文中一共展示了datasets.IndexableDataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setup_datastream
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def setup_datastream(path, batch_size, sort_batch_count, valid=False):
A = numpy.load(os.path.join(path, ('valid_x_raw.npy' if valid else 'train_x_raw.npy')))
B = numpy.load(os.path.join(path, ('valid_phn.npy' if valid else 'train_phn.npy')))
C = numpy.load(os.path.join(path, ('valid_seq_to_phn.npy' if valid else 'train_seq_to_phn.npy')))
D = [B[x[0]:x[1], 2] for x in C]
ds = IndexableDataset({'input': A, 'output': D})
stream = DataStream(ds, iteration_scheme=ShuffledExampleScheme(len(A)))
stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size * sort_batch_count))
comparison = _balanced_batch_helper(stream.sources.index('input'))
stream = Mapping(stream, SortMapping(comparison))
stream = Unpack(stream)
stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size, num_examples=len(A)))
stream = Padding(stream, mask_sources=['input', 'output'])
return ds, stream
示例2: build_fuel
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def build_fuel(data):
# create fuel dataset.
dataset = datasets.IndexableDataset(indexables=OrderedDict([('data', data)]))
dataset.example_iteration_scheme \
= schemes.ShuffledExampleScheme(dataset.num_examples)
return dataset, len(data)
示例3: build_data
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def build_data(data):
# create fuel dataset.
dataset = datasets.IndexableDataset(indexables=OrderedDict([('source', data['source']),
('target', data['target']),
# ('target_c', data['target_c']),
]))
dataset.example_iteration_scheme \
= schemes.ShuffledExampleScheme(dataset.num_examples)
return dataset
示例4: test_mean_aggregator
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_mean_aggregator():
num_examples = 4
batch_size = 2
features = numpy.array([[0, 3],
[2, 9],
[2, 4],
[5, 1]], dtype=theano.config.floatX)
dataset = IndexableDataset(OrderedDict([('features', features)]))
data_stream = DataStream(dataset,
iteration_scheme=SequentialScheme(num_examples,
batch_size))
x = tensor.matrix('features')
y = (x**2).mean(axis=0)
y.name = 'y'
z = y.sum()
z.name = 'z'
y.tag.aggregation_scheme = Mean(y, 1.)
z.tag.aggregation_scheme = Mean(z, 1.)
assert_allclose(DatasetEvaluator([y]).evaluate(data_stream)['y'],
numpy.array([8.25, 26.75], dtype=theano.config.floatX))
assert_allclose(DatasetEvaluator([z]).evaluate(data_stream)['z'],
numpy.array([35], dtype=theano.config.floatX))
示例5: test_getattr
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_getattr(self):
assert_equal(getattr(IndexableDataset({'a': (1, 2)}), 'a'), (1, 2))
示例6: test_value_error_get_data_state
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_value_error_get_data_state(self):
assert_raises(
ValueError, IndexableDataset([1, 2, 3]).get_data, True, [1, 2])
示例7: test_value_error_get_data_none_request
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_value_error_get_data_none_request(self):
assert_raises(
ValueError, IndexableDataset([1, 2, 3]).get_data, None, None)
示例8: test_pickling
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_pickling(self):
cPickle.loads(cPickle.dumps(IndexableDataset({'a': (1, 2)})))
示例9: test_num_examples
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_num_examples():
assert_raises(ValueError, IterableDataset,
{'features': range(10), 'targets': range(7)})
dataset = IterableDataset({'features': range(7),
'targets': range(7)})
assert dataset.num_examples == 7
dataset = IterableDataset(repeat(1))
assert numpy.isnan(dataset.num_examples)
x = numpy.random.rand(5, 3)
y = numpy.random.rand(5, 4)
dataset = IndexableDataset({'features': x, 'targets': y})
assert dataset.num_examples == 5
assert_raises(ValueError, IndexableDataset,
{'features': x, 'targets': y[:4]})
示例10: test_axis_labels_on_produces_batches
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_axis_labels_on_produces_batches(self):
dataset = IndexableDataset(numpy.eye(2))
axis_labels = {'data': ('batch', 'features')}
dataset.axis_labels = axis_labels
stream = DataStream(dataset, iteration_scheme=SequentialScheme(2, 2))
assert_equal(stream.axis_labels, axis_labels)
示例11: test_flatten_batches
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_flatten_batches(self):
wrapper = Flatten(
DataStream(IndexableDataset(self.data),
iteration_scheme=SequentialScheme(4, 2)),
which_sources=('features',))
assert_equal(
list(wrapper.get_epoch_iterator()),
[(numpy.ones((2, 4)), numpy.array([[0], [1]])),
(numpy.ones((2, 4)), numpy.array([[0], [1]]))])
示例12: test_axis_labels_on_flatten_batches
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_axis_labels_on_flatten_batches(self):
wrapper = Flatten(
DataStream(IndexableDataset(self.data),
iteration_scheme=SequentialScheme(4, 2),
axis_labels={'features': ('batch', 'width', 'height'),
'targets': ('batch', 'index')}),
which_sources=('features',))
assert_equal(wrapper.axis_labels, {'features': ('batch', 'feature'),
'targets': ('batch', 'index')})
示例13: test_axis_labels_on_flatten_batches_with_none
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_axis_labels_on_flatten_batches_with_none(self):
wrapper = Flatten(
DataStream(IndexableDataset(self.data),
iteration_scheme=SequentialScheme(4, 2),
axis_labels={'features': None,
'targets': ('batch', 'index')}),
which_sources=('features',))
assert_equal(wrapper.axis_labels, {'features': None,
'targets': ('batch', 'index')})
示例14: test_axis_labels_on_flatten_examples
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_axis_labels_on_flatten_examples(self):
wrapper = Flatten(
DataStream(IndexableDataset(self.data),
iteration_scheme=SequentialExampleScheme(4),
axis_labels={'features': ('batch', 'width', 'height'),
'targets': ('batch', 'index')}),
which_sources=('features',))
assert_equal(wrapper.axis_labels, {'features': ('feature',),
'targets': ('index',)})
示例15: test_filter_batches
# 需要導入模塊: from fuel import datasets [as 別名]
# 或者: from fuel.datasets import IndexableDataset [as 別名]
def test_filter_batches(self):
data = [1, 2, 3, 4]
data_filtered = [([3, 4],)]
stream = DataStream(IndexableDataset(data),
iteration_scheme=SequentialScheme(4, 2))
wrapper = Filter(stream, lambda d: d[0][0] % 3 == 0)
assert_equal(list(wrapper.get_epoch_iterator()), data_filtered)