本文整理匯總了Python中fractions.gcd方法的典型用法代碼示例。如果您正苦於以下問題:Python fractions.gcd方法的具體用法?Python fractions.gcd怎麽用?Python fractions.gcd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fractions
的用法示例。
在下文中一共展示了fractions.gcd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __new__
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def __new__(cls, name, bases, attrs):
# A list of all functions which is marked as 'is_cronjob=True'
cron_jobs = []
# The min_tick is the greatest common divisor(GCD) of the interval of cronjobs
# this value would be queried by scheduler when the project initial loaded.
# Scheudler may only send _on_cronjob task every min_tick seconds. It can reduce
# the number of tasks sent from scheduler.
min_tick = 0
for each in attrs.values():
if inspect.isfunction(each) and getattr(each, 'is_cronjob', False):
cron_jobs.append(each)
min_tick = fractions.gcd(min_tick, each.tick)
newcls = type.__new__(cls, name, bases, attrs)
newcls._cron_jobs = cron_jobs
newcls._min_tick = min_tick
return newcls
示例2: exgcd
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def exgcd(a,b):
"""
Bézout coefficients (u,v) of (a,b) as:
a*u + b*v = gcd(a,b)
Result is the tuple: (u, v, gcd(a,b)). Examples:
>>> exgcd(7*3, 15*3)
(-2, 1, 3)
>>> exgcd(24157817, 39088169) #sequential Fibonacci numbers
(-14930352, 9227465, 1)
Algorithm source: Pierre L. Douillet
http://www.douillet.info/~douillet/working_papers/bezout/node2.html
"""
u, v, s, t = 1, 0, 0, 1
while b !=0:
q, r = divmod(a,b)
a, b = b, r
u, s = s, u - q*s
v, t = t, v - q*t
return (u, v, a)
示例3: calculate_alloc_stats
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def calculate_alloc_stats(self):
"""Calculates the minimum_size and alignment_gcd to determine "virtual allocs" when read lengths of data
It's particularly important to cast all numbers to ints, since they're used a lot and object take effort to reread.
"""
available_allocs = list(self.get_available_allocs())
self.minimum_size = int(min([size for _, size in available_allocs]))
accumulator = self.minimum_size
for start, _ in available_allocs:
if accumulator is None and start > 1:
accumulator = start
if accumulator and start > 0:
accumulator = fractions.gcd(accumulator, start)
self.alignment_gcd = int(accumulator)
# Pick an arbitrary cut-off that'll lead to too many reads
if self.alignment_gcd < 0x4:
debug.warning("Alignment of " + self.__class__.__name__ + " is too small, plugins will be extremely slow")
示例4: testMisc
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def testMisc(self):
# fractions.gcd() is deprecated
with self.assertWarnsRegex(DeprecationWarning, r'fractions\.gcd'):
gcd(1, 1)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', r'fractions\.gcd',
DeprecationWarning)
self.assertEqual(0, gcd(0, 0))
self.assertEqual(1, gcd(1, 0))
self.assertEqual(-1, gcd(-1, 0))
self.assertEqual(1, gcd(0, 1))
self.assertEqual(-1, gcd(0, -1))
self.assertEqual(1, gcd(7, 1))
self.assertEqual(-1, gcd(7, -1))
self.assertEqual(1, gcd(-23, 15))
self.assertEqual(12, gcd(120, 84))
self.assertEqual(-12, gcd(84, -120))
self.assertEqual(gcd(120.0, 84), 12.0)
self.assertEqual(gcd(120, 84.0), 12.0)
self.assertEqual(gcd(F(120), F(84)), F(12))
self.assertEqual(gcd(F(120, 77), F(84, 55)), F(12, 385))
示例5: generate_indices
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def generate_indices(max_index):
"""Return an array of miller indices enumerated up to values
plus or minus some maximum. Filters out lists with greatest
common divisors greater than one. Only positive values need to
be considered for the first index.
Parameters
----------
max_index : int
Maximum number that will be considered for a given surface.
Returns
-------
unique_index : ndarray (n, 3)
Unique miller indices
"""
grid = np.mgrid[max_index:-1:-1,
max_index:-max_index-1:-1,
max_index:-max_index-1:-1]
index = grid.reshape(3, -1)
gcd = utils.list_gcd(index)
unique_index = index.T[np.where(gcd == 1)]
return unique_index
示例6: rotate
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def rotate(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: None Do not return anything, modify nums in-place instead.
"""
import fractions
if len(nums) == 0 or k == 0 or k == len(nums):
return
gcd = fractions.gcd(len(nums), k)
for i in xrange(gcd):
runner = i
num = nums[runner]
while True:
next_idx = (runner + k) % len(nums)
tmp = nums[next_idx]
nums[next_idx] = num
num = tmp
runner = next_idx
if runner == i:
break
示例7: _initialize_mtf_dimension_name_to_size_gcd
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def _initialize_mtf_dimension_name_to_size_gcd(self, mtf_graph):
"""Initializer for self._mtf_dimension_name_to_size_gcd.
Args:
mtf_graph: an mtf.Graph.
Returns:
A {string: int}, mapping the name of an MTF dimension to the greatest
common divisor of all the sizes it has. All these sizes being evenly
divisible by some x is equivalent to the GCD being divisible by x.
"""
mtf_dimension_name_to_size_gcd = {}
for mtf_operation in mtf_graph.operations:
for mtf_tensor in mtf_operation.outputs:
for mtf_dimension in mtf_tensor.shape.dims:
mtf_dimension_name_to_size_gcd[mtf_dimension.name] = fractions.gcd(
mtf_dimension_name_to_size_gcd.get(mtf_dimension.name,
mtf_dimension.size),
mtf_dimension.size)
return mtf_dimension_name_to_size_gcd
示例8: gcd
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def gcd(*values: int) -> int:
"""
Return the greatest common divisor of a series of ints
:param values: The values of which to compute the GCD
:return: The GCD
"""
assert len(values) > 0
# 3.5 moves fractions.gcd to math.gcd
if sys.version_info.major == 3 and sys.version_info.minor < 5:
import fractions
return reduce(fractions.gcd, values)
else:
return reduce(math.gcd, values)
示例9: lcm
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def lcm(*values: int) -> int:
"""
Return the least common multiple of a series of ints
:param values: The values of which to compute the LCM
:return: The LCM
"""
assert len(values) > 0
# 3.5 moves fractions.gcd to math.gcd
if sys.version_info.major == 3 and sys.version_info.minor < 5:
import fractions
return reduce(lambda x, y: (x * y) // fractions.gcd(x, y), values)
else:
return reduce(lambda x, y: (x * y) // math.gcd(x, y), values)
示例10: _lcm
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def _lcm(self, a, b):
return a * b // fractions.gcd(a, b)
示例11: __init__
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def __init__(self, target, rand=True, state=None):
# see https://fr.wikipedia.org/wiki/Générateur_congruentiel_linéaire
self.target = target
self.nextcount = 0
self.lcg_m = target.targetscount
if state is not None:
self.previous = state[0]
self.lcg_c = state[1]
self.lcg_a = state[2]
self.nextcount = state[3]
elif rand and target.targetscount > 1:
# X_{-1}
self.previous = random.randint(0, self.lcg_m - 1)
# GCD(c, m) == 1
self.lcg_c = random.randint(1, self.lcg_m - 1)
# pylint: disable=deprecated-method
while gcd(self.lcg_c, self.lcg_m) != 1:
self.lcg_c = random.randint(1, self.lcg_m - 1)
# a - 1 is divisible by all prime factors of m
mfactors = reduce(mul, set(mathutils.factors(self.lcg_m)))
# a - 1 is a multiple of 4 if m is a multiple of 4.
if self.lcg_m % 4 == 0:
mfactors *= 2
self.lcg_a = mfactors + 1
else:
self.previous = self.lcg_m - 1
self.lcg_a = 1
self.lcg_c = 1
示例12: multiples_of_a_divisors_of_b
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def multiples_of_a_divisors_of_b(lcm, gcd):
result = []
multiplyer = 1
while (lcm * multiplyer <= gcd):
if (gcd % (lcm * multiplyer) == 0):
result.append(lcm * multiplyer)
multiplyer += 1
return result
# Import gcd and lcm from https://gist.github.com/endolith/114336
示例13: gcd
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def gcd(*numbers):
"""Return the greatest common divisor of the given integers"""
from fractions import gcd
return reduce(gcd, numbers)
示例14: lcm
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def lcm(*numbers):
"""Return lowest common multiple."""
def lcm(a, b):
return (a * b) // gcd(a, b)
return reduce(lcm, numbers, 1)
示例15: __init__
# 需要導入模塊: import fractions [as 別名]
# 或者: from fractions import gcd [as 別名]
def __init__(self, num, den):
g = gcd(num, den)
self.num = num // g
self.den = den // g