當前位置: 首頁>>代碼示例>>Python>>正文


Python flashtext.KeywordProcessor方法代碼示例

本文整理匯總了Python中flashtext.KeywordProcessor方法的典型用法代碼示例。如果您正苦於以下問題:Python flashtext.KeywordProcessor方法的具體用法?Python flashtext.KeywordProcessor怎麽用?Python flashtext.KeywordProcessor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在flashtext的用法示例。


在下文中一共展示了flashtext.KeywordProcessor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_kp

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def _build_kp(self, case_sensitive=True):
        ## Prepare tokenizer and flashtext keyword processor
        keyword_processor = KeywordProcessor(case_sensitive=case_sensitive)
        id_to_key_dict = load_keyword_dict_v1_3(
            config.DATA_ROOT / "id_dict.jsonl", filtering=True)
        exact_match_rule_dict = set_priority(id_to_key_dict, priority=5.0)
        noisy_key_dict = id_dict_key_word_expand(id_to_key_dict,
                                                 create_new_key_word_dict=True)
        noisy_parenthese_rule_dict = set_priority(noisy_key_dict, priority=1.0)

        build_processor(keyword_processor,
                        exact_match_rule_dict)
        build_processor(keyword_processor,
                        noisy_parenthese_rule_dict)

        ## Change priorities of digital numbers
        KeywordRuleBuilder.eliminate_pure_digits_in_place(keyword_processor)
        KeywordRuleBuilder.eliminate_ordinals_in_place(keyword_processor)
        KeywordRuleBuilder.eliminate_stop_words_in_place(keyword_processor)

        return keyword_processor 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:23,代碼來源:item_rules.py

示例2: __init__

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def __init__(self, keywords_list=[], keywords_dict={}, keywords_file=None,
                 label='', case_sensitive=False,
                 attrs=('has_entities', 'is_entity', 'entity_desc', 'entities', 'canonical')):
        """Initialise the pipeline component.
        """
        self._has_entities, self._is_entity, self._entity_desc, self._entities, self.canonical = attrs

        # Set up the KeywordProcessor
        self.keyword_processor = KeywordProcessor(case_sensitive=case_sensitive)
        self.keyword_processor.add_keywords_from_list(keywords_list)
        self.keyword_processor.add_keywords_from_dict(keywords_dict)
        if keywords_file:
            self.keyword_processor.add_keyword_from_file(keywords_file)
        self.label = label

        # Register attribute on the Doc and Span
        Doc.set_extension(self._has_entities, getter=self.has_entities, force=True)
        Doc.set_extension(self._entities, getter=self.iter_entities, force=True)
        Span.set_extension(self._has_entities, getter=self.has_entities, force=True)
        Span.set_extension(self._entities, getter=self.iter_entities, force=True)

        # Register attribute on the Token.
        Token.set_extension(self._is_entity, default=False, force=True)
        Token.set_extension(self._entity_desc, getter=self.get_entity_desc, force=True)
        Token.set_extension(self.canonical, default=None, force=True) 
開發者ID:mpuig,項目名稱:spacy-lookup,代碼行數:27,代碼來源:__init__.py

示例3: __init__

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def __init__(self,
                 language='english',
                 preprocess_type='nltk',
                 stopwords_remove=True,
                 length_limit=10,
                 debug=False):
        self.language = language
        self.preprocess_type = preprocess_type
        self.stopwords_remove = stopwords_remove
        self.length_limit = length_limit
        self.debug = debug
        if stopwords_remove:
            stopword_remover = flashtext.KeywordProcessor()
            for stopword in stopwords.words(self.language):
                stopword_remover.add_keyword(stopword, '')
            self.stopword_remover = stopword_remover
        return 
開發者ID:gaetangate,項目名稱:text-summarizer,代碼行數:19,代碼來源:base.py

示例4: get_kwterm_matching

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def get_kwterm_matching(kw_terms, d_list, chuck_size=10_000_000):
    kw_terms = list(kw_terms)
    kw_terms_total_size = len(kw_terms)
    for start in range(0, kw_terms_total_size, chuck_size):
        print(start, start + chuck_size)
        current_kw_terms = kw_terms[start:start + chuck_size]
        keyword_processor = KeywordProcessor(case_sensitive=True)
        for word in tqdm(current_kw_terms):
            keyword_processor.add_keyword(word)

        for item in tqdm(d_list):
            query = item['question']
            terms = query_get_terms(query, keyword_processor)
            if 'kw_matches' not in item:
                item['kw_matches'] = []
            item['kw_matches'].extend(terms)

        del keyword_processor

    return d_list 
開發者ID:easonnie,項目名稱:semanticRetrievalMRS,代碼行數:22,代碼來源:term_matching.py

示例5: test_remove_keywords_dictionary_compare

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_remove_keywords_dictionary_compare(self):
        """For each of the test case initialize a new KeywordProcessor.
        Add the keywords the test case to KeywordProcessor.
        Remove the keywords in remove_keyword_dict
        Extract keywords and check if they match the expected result for the test case.
        """
        for test_id, test_case in enumerate(self.test_cases):
            keyword_processor = KeywordProcessor()
            keyword_processor.add_keywords_from_dict(test_case['keyword_dict'])
            keyword_processor.remove_keywords_from_dict(test_case['remove_keyword_dict'])
            keyword_trie_dict = keyword_processor.keyword_trie_dict

            new_dictionary = defaultdict(list)
            for key, values in test_case['keyword_dict'].items():
                for value in values:
                    if not(key in test_case['remove_keyword_dict'] and value in test_case['remove_keyword_dict'][key]):
                        new_dictionary[key].append(value)

            keyword_processor_two = KeywordProcessor()
            keyword_processor_two.add_keywords_from_dict(new_dictionary)
            keyword_trie_dict_two = keyword_processor_two.keyword_trie_dict
            self.assertTrue(keyword_trie_dict == keyword_trie_dict_two,
                            "keywords_extracted don't match the expected results for test case: {}".format(test_id)) 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:25,代碼來源:test_remove_keywords.py

示例6: test_extract_keywords

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_extract_keywords(self):
        """For each of the test case initialize a new KeywordProcessor.
        Add the keywords the test case to KeywordProcessor.
        Extract keywords and check if they match the expected result for the test case.

        """
        for test_id, test_case in enumerate(self.test_cases):
            keyword_processor = KeywordProcessor()
            for key in test_case['keyword_dict']:
                keyword_processor.add_keywords_from_list(test_case['keyword_dict'][key])
            keywords_extracted = keyword_processor.extract_keywords(test_case['sentence'], span_info=True)
            for kwd in keywords_extracted:
                # returned keyword lowered should match the sapn from sentence
                self.assertEqual(
                    kwd[0].lower(), test_case['sentence'].lower()[kwd[1]:kwd[2]],
                    "keywords span don't match the expected results for test case: {}".format(test_id)) 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:18,代碼來源:test_kp_extract_span.py

示例7: test_correct_keyword_on_deletion

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_correct_keyword_on_deletion(self):
        """
        Test for simple deletions using the levensthein function
        We ensure we end up on the right node in the trie when starting from the current node
        """
        keyword_proc = KeywordProcessor()
        keyword_proc.add_keyword('skype')
        current_dict = {'y': {'p': {'e': {'_keyword_': 'skype'}}}}

        closest_node, cost, depth = next(
            keyword_proc.levensthein('pe', max_cost=1, start_node=current_dict),
            ({}, 0, 0),
        )

        self.assertDictEqual(closest_node, current_dict['y']['p']['e'])
        self.assertEqual(cost, 1)
        self.assertEqual(depth, 3) 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:19,代碼來源:test_extract_fuzzy.py

示例8: test_correct_keyword_on_substitution

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_correct_keyword_on_substitution(self):
        """
        Test for simple substitions using the levensthein function
        We ensure we end up on the right node in the trie when starting from the current node
        """
        keyword_proc = KeywordProcessor()
        for keyword in (('skype', 'messenger'),):
            keyword_proc.add_keyword(*keyword)

        current_dict = keyword_proc.keyword_trie_dict['s']['k']
        closest_node, cost, depth = next(
            keyword_proc.levensthein('ope', max_cost=1, start_node=current_dict),
            ({}, 0, 0)
            )
        self.assertDictEqual(closest_node, current_dict['y']['p']['e'])
        self.assertEqual(cost, 1)
        self.assertEqual(depth, 3) 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:19,代碼來源:test_extract_fuzzy.py

示例9: test_term_in_dictionary

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_term_in_dictionary(self):
        keyword_processor = KeywordProcessor()
        keyword_processor.add_keyword('j2ee', 'Java')
        keyword_processor.add_keyword('colour', 'color')
        keyword_processor.get_keyword('j2ee')
        self.assertEqual(keyword_processor.get_keyword('j2ee'),
                         'Java',
                         "get_keyword didn't return expected Keyword")
        self.assertEqual(keyword_processor['colour'],
                         'color',
                         "get_keyword didn't return expected Keyword")
        self.assertEqual(keyword_processor['Test'],
                         None,
                         "get_keyword didn't return expected Keyword")
        self.assertTrue('colour' in keyword_processor,
                        "get_keyword didn't return expected Keyword")
        self.assertFalse('Test' in keyword_processor,
                         "get_keyword didn't return expected Keyword") 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:20,代碼來源:test_kp_term_in_kp.py

示例10: test_remove_keywords_dictionary_len

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def test_remove_keywords_dictionary_len(self):
        """For each of the test case initialize a new KeywordProcessor.
        Add the keywords the test case to KeywordProcessor.
        Remove the keywords in remove_keyword_dict
        Extract keywords and check if they match the expected result for the test case.
        """
        for test_id, test_case in enumerate(self.test_cases):
            keyword_processor = KeywordProcessor()
            keyword_processor.add_keywords_from_dict(test_case['keyword_dict'])
            keyword_processor.remove_keywords_from_dict(test_case['remove_keyword_dict'])

            kp_len = len(keyword_processor)

            new_dictionary = defaultdict(list)
            for key, values in test_case['keyword_dict'].items():
                for value in values:
                    if not(key in test_case['remove_keyword_dict'] and value in test_case['remove_keyword_dict'][key]):
                        new_dictionary[key].append(value)

            keyword_processor_two = KeywordProcessor()
            keyword_processor_two.add_keywords_from_dict(new_dictionary)
            kp_len_two = len(keyword_processor_two)
            self.assertEqual(kp_len, kp_len_two,
                             "keyword processor length doesn't match for Text ID {}".format(test_id)) 
開發者ID:vi3k6i5,項目名稱:flashtext,代碼行數:26,代碼來源:test_kp_len.py

示例11: used_func_for_fast_key_word_matching_expanded_kw

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def used_func_for_fast_key_word_matching_expanded_kw():
    """
    Added on July 1.
    :return:
    """
    # Load tokenizer
    path_stanford_corenlp_full_2017_06_09 = str(config.PRO_ROOT / 'dep_packages/stanford-corenlp-full-2017-06-09/*')
    drqa_yixin.tokenizers.set_default('corenlp_classpath', path_stanford_corenlp_full_2017_06_09)
    tok = CoreNLPTokenizer(annotators=['pos', 'lemma', 'ner'])
    #
    keyword_processor = KeywordProcessor(case_sensitive=True)
    id_to_key_dict = load_keyword_dict(config.DATA_ROOT / "id_dict.jsonl")

    id_dict_key_word_expand(id_to_key_dict, create_new_key_word_dict=False)

    # exit(-2)

    # Write this in a for loop to keep track of the progress
    build_flashtext_processor_wit(keyword_processor, id_to_key_dict)

    # Load data for predicting
    d_list = load_data(config.FEVER_DEV_JSONL)
    sample_answer(d_list, tok, keyword_p=keyword_processor)

    # save the the results for evaluating
    out_fname = config.RESULT_PATH / "doc_retri" / f"{utils.get_current_time_str()}_r" / "dev.jsonl"
    save_intermidiate_results(d_list, out_filename=out_fname)

    # Evaluating
    # out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:20:54_r/dev.jsonl'
    # out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:08:06_r/dev.jsonl'
    # d_list = load_data(out_fname)
    eval_mode = {'check_doc_id_correct': True, 'standard': False}
    # print(fever_score(d_list, d_list, mode=eval_mode, error_analysis_file=Path(out_fname).parent / "analysis.log"))
    print(fever_score(d_list, d_list, mode=eval_mode, verbose=False)) 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:37,代碼來源:fast_key_word_matching_version_1.1.py

示例12: used_func_for_fast_key_word_matching_expanded_kw

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def used_func_for_fast_key_word_matching_expanded_kw():
    """
    Added on July 1.
    :return:
    """
    # Load tokenizer
    # path_stanford_corenlp_full_2017_06_09 = str(config.PRO_ROOT / 'dep_packages/stanford-corenlp-full-2017-06-09/*')
    # drqa.tokenizers.set_default('corenlp_classpath', path_stanford_corenlp_full_2017_06_09)
    # tok = CoreNLPTokenizer(annotators=['pos', 'lemma', 'ner'])
    #
    # keyword_processor = KeywordProcessor(case_sensitive=True)
    # id_to_key_dict = load_keyword_dict(config.DATA_ROOT / "id_dict.jsonl")
    # id_dict_key_word_expand(id_to_key_dict)

    # exit(-2)

    # Write this in a for loop to keep track of the progress
    # build_flashtext_processor(keyword_processor, id_to_key_dict)
    # for clean_name, keywords in tqdm(id_to_key_dict.items()):
    #     if not isinstance(keywords, list):
    #         raise AttributeError("Value of key {} should be a list".format(clean_name))
    #
    #     for keyword in keywords:
    #         keyword_processor.add_keyword(keyword, clean_name)

    # Load data for predicting
    # d_list = load_data(config.FEVER_DEV_JSONL)
    # sample_answer(d_list, tok, keyword_p=keyword_processor)

    # save the the results for evaluating
    # out_fname = config.RESULT_PATH / "doc_retri" / f"{utils.get_current_time_str()}_r" / "dev.jsonl"
    # save_intermidiate_results(d_list, out_filename=out_fname)

    # Evaluating
    out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:20:54_r/dev.jsonl'
    # out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:08:06_r/dev.jsonl'
    d_list = load_data(out_fname)
    eval_mode = {'check_doc_id_correct': True, 'standard': False}
    # print(fever_score(d_list, d_list, mode=eval_mode, error_analysis_file=Path(out_fname).parent / "analysis.log"))
    print(fever_score(d_list, d_list, mode=eval_mode, verbose=False)) 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:42,代碼來源:fast_key_word_matching.py

示例13: used_func_for_fast_key_word_matching_expanded_kw

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def used_func_for_fast_key_word_matching_expanded_kw():
    """
    Added on July 1.
    :return:
    """
    # Load tokenizer
    path_stanford_corenlp_full_2017_06_09 = str(config.PRO_ROOT / 'dep_packages/stanford-corenlp-full-2017-06-09/*')
    drqa_yixin.tokenizers.set_default('corenlp_classpath', path_stanford_corenlp_full_2017_06_09)
    tok = CoreNLPTokenizer(annotators=['pos', 'lemma', 'ner'])
    #
    keyword_processor = KeywordProcessor(case_sensitive=True)
    id_to_key_dict = load_keyword_dict(config.DATA_ROOT / "id_dict.jsonl")

    id_dict_key_word_expand(id_to_key_dict, create_new_key_word_dict=False)

    # exit(-2)

    # Write this in a for loop to keep track of the progress
    build_flashtext_processor(keyword_processor, id_to_key_dict)

    # Load data for predicting
    d_list = load_data(config.FEVER_DEV_JSONL)
    sample_answer(d_list, tok, keyword_p=keyword_processor)

    # save the the results for evaluating
    out_fname = config.RESULT_PATH / "doc_retri" / f"{utils.get_current_time_str()}_r" / "dev.jsonl"
    save_intermidiate_results(d_list, out_filename=out_fname)

    # Evaluating
    # out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:20:54_r/dev.jsonl'
    # out_fname = '/Users/Eason/RA/FunEver/results/doc_retri/2018_07_01_17:08:06_r/dev.jsonl'
    # d_list = load_data(out_fname)
    eval_mode = {'check_doc_id_correct': True, 'standard': False}
    # print(fever_score(d_list, d_list, mode=eval_mode, error_analysis_file=Path(out_fname).parent / "analysis.log"))
    print(fever_score(d_list, d_list, mode=eval_mode, verbose=False)) 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:37,代碼來源:fast_key_word_matching_version_1.0.py

示例14: __init__

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def __init__(self, substrings, text_datasource=None, case_sensitive=False,
                 exclusions=None, name=None):
        self.word_processor = KeywordProcessor(case_sensitive=case_sensitive)

        if exclusions is not None:
            substrings = list(set(substrings).difference(set(exclusions)))

        self.word_processor.add_keywords_from_list(substrings)

        name = self._format_name(name, [substrings, text_datasource])
        super().__init__(name, self.process, depends_on=[text_datasource]) 
開發者ID:wikimedia,項目名稱:revscoring,代碼行數:13,代碼來源:extractors.py

示例15: toy_init_results

# 需要導入模塊: import flashtext [as 別名]
# 或者: from flashtext import KeywordProcessor [as 別名]
def toy_init_results():
    ner_set = get_title_entity_set()

    dev_fullwiki_list = common.load_json(config.DEV_FULLWIKI_FILE)
    print(len(dev_fullwiki_list))

    keyword_processor = KeywordProcessor(case_sensitive=True)

    print("Build Processor")
    for kw in tqdm(ner_set):
        if kw.lower() in STOPWORDS or filter_document_id(kw):
            continue  # if the keyword is filtered by above function or is stopwords
        else:
            keyword_processor.add_keyword(kw, {kw})

    doc_pred_dict = {'sp_doc': dict()}

    for item in tqdm(dev_fullwiki_list):
        question = item['question']
        qid = item['_id']
        finded_keys = keyword_processor.extract_keywords(question)
        finded_keys_set = set()
        if isinstance(finded_keys, list) and len(finded_keys) != 0:
            finded_keys_set = set.union(*finded_keys)

        # Addons cut retrieved document to contain only two
        finded_keys_set = sorted(list(finded_keys_set), key=lambda x: len(x), reverse=True)
        top_n = 2
        finded_keys_set = finded_keys_set[:top_n]

        doc_pred_dict['sp_doc'][qid] = list(finded_keys_set)

    common.save_json(doc_pred_dict, "toy_doc_rm_stopword_top2_pred_file.json") 
開發者ID:easonnie,項目名稱:semanticRetrievalMRS,代碼行數:35,代碼來源:hotpot_preliminary_doc_retri.py


注:本文中的flashtext.KeywordProcessor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。