當前位置: 首頁>>代碼示例>>Python>>正文


Python embeddings.WordEmbeddings方法代碼示例

本文整理匯總了Python中flair.embeddings.WordEmbeddings方法的典型用法代碼示例。如果您正苦於以下問題:Python embeddings.WordEmbeddings方法的具體用法?Python embeddings.WordEmbeddings怎麽用?Python embeddings.WordEmbeddings使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在flair.embeddings的用法示例。


在下文中一共展示了embeddings.WordEmbeddings方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform

# 需要導入模塊: from flair import embeddings [as 別名]
# 或者: from flair.embeddings import WordEmbeddings [as 別名]
def transform(self, X: dt.Frame):
        X.replace([None, math.inf, -math.inf], self._repl_val)
        from flair.embeddings import WordEmbeddings, BertEmbeddings, DocumentPoolEmbeddings, Sentence
        if self.embedding_name in ["glove", "en"]:
            self.embedding = WordEmbeddings(self.embedding_name)
        elif self.embedding_name in ["bert"]:
            self.embedding = BertEmbeddings()
        self.doc_embedding = DocumentPoolEmbeddings([self.embedding])
        output = []
        X = X.to_pandas()
        text1_arr = X.iloc[:, 0].values
        text2_arr = X.iloc[:, 1].values
        for ind, text1 in enumerate(text1_arr):
            try:
                text1 = Sentence(str(text1).lower())
                self.doc_embedding.embed(text1)
                text2 = text2_arr[ind]
                text2 = Sentence(str(text2).lower())
                self.doc_embedding.embed(text2)
                score = cosine_similarity(text1.get_embedding().reshape(1, -1),
                                          text2.get_embedding().reshape(1, -1))[0, 0]
                output.append(score)
            except:
                output.append(-99)
        return np.array(output) 
開發者ID:h2oai,項目名稱:driverlessai-recipes,代碼行數:27,代碼來源:text_embedding_similarity_transformers.py

示例2: __init__

# 需要導入模塊: from flair import embeddings [as 別名]
# 或者: from flair.embeddings import WordEmbeddings [as 別名]
def __init__(self, device_number='cuda:2', use_cuda = True):
        
        self.device_number = device_number
        
        if use_cuda:
            flair.device = torch.device(self.device_number) 
        
        self.stacked_embeddings = StackedEmbeddings([WordEmbeddings('glove'), 
                                        FlairEmbeddings('news-forward'), 
                                        FlairEmbeddings('news-backward'),
                                        ]) 
開發者ID:uhh-lt,項目名稱:bert-sense,代碼行數:13,代碼來源:Flair_Model.py

示例3: load_context_embeddings_with_flair

# 需要導入模塊: from flair import embeddings [as 別名]
# 或者: from flair.embeddings import WordEmbeddings [as 別名]
def load_context_embeddings_with_flair(direction='bi', word_embeddings=True,
                                       cache_dir=DEFAULT_CACHE_DIR,
                                       verbose=False):
    """
    :param bidirectional:
    :param cache_dir:
    :param verbose:
    """
    from flair.embeddings import FlairEmbeddings
    from flair.embeddings import WordEmbeddings
    from flair.embeddings import StackedEmbeddings

    embeddings = []

    if word_embeddings:
        fasttext_embedding = WordEmbeddings('da')
        embeddings.append(fasttext_embedding)

    if direction == 'bi' or direction == 'fwd':
        fwd_weight_path = download_model('flair.fwd', cache_dir,
                                         verbose=verbose,
                                         process_func=_unzip_process_func)
        embeddings.append(FlairEmbeddings(fwd_weight_path))

    if direction == 'bi' or direction == 'bwd':
        bwd_weight_path = download_model('flair.bwd', cache_dir,
                                         verbose=verbose,
                                         process_func=_unzip_process_func)
        embeddings.append(FlairEmbeddings(bwd_weight_path))

    if len(embeddings) == 1:
        return embeddings[0]

    return StackedEmbeddings(embeddings=embeddings) 
開發者ID:alexandrainst,項目名稱:danlp,代碼行數:36,代碼來源:embeddings.py


注:本文中的flair.embeddings.WordEmbeddings方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。