本文整理匯總了Python中filelock.FileLock方法的典型用法代碼示例。如果您正苦於以下問題:Python filelock.FileLock方法的具體用法?Python filelock.FileLock怎麽用?Python filelock.FileLock使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類filelock
的用法示例。
在下文中一共展示了filelock.FileLock方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def __init__(
self,
seed=0,
episode_len=None,
no_images=None
):
from tensorflow.examples.tutorials.mnist import input_data
# we could use temporary directory for this with a context manager and
# TemporaryDirecotry, but then each test that uses mnist would re-download the data
# this way the data is not cleaned up, but we only download it once per machine
mnist_path = osp.join(tempfile.gettempdir(), 'MNIST_data')
with filelock.FileLock(mnist_path + '.lock'):
self.mnist = input_data.read_data_sets(mnist_path)
self.np_random = np.random.RandomState()
self.np_random.seed(seed)
self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1))
self.action_space = Discrete(10)
self.episode_len = episode_len
self.time = 0
self.no_images = no_images
self.train_mode()
self.reset()
示例2: _load_frozen_paths
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def _load_frozen_paths():
library_directory = config.get('MINEMELD_LOCAL_LIBRARY_PATH', None)
if library_directory is None:
LOG.error('freeze not updated - MINEMELD_LOCAL_LIBRARY_PATH not set')
return
freeze_path = os.path.join(library_directory, 'freeze.txt')
if not os.path.isfile(freeze_path):
LOG.info('Extensions frigidaire not found, paths not loaded')
return
freeze_lock = filelock.FileLock('{}.lock'.format(freeze_path))
with freeze_lock.acquire(timeout=30):
with open(freeze_path, 'r') as ff:
minemeld.extensions.load_frozen_paths(ff)
示例3: read
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def read(self):
fdfname = self.datafilename+'.yml'
lockfname = os.path.join(self.cpath, fdfname+'.lock')
lock = filelock.FileLock(lockfname)
os.listdir(self.cpath)
if fdfname not in os.listdir(self.cpath):
return jsonify(error={
'message': 'Unknown config data file'
}), 400
try:
with lock.acquire(timeout=10):
with open(os.path.join(self.cpath, fdfname), 'r') as f:
result = yaml.safe_load(f)
except Exception as e:
return jsonify(error={
'message': 'Error loading config data file: %s' % str(e)
}), 500
return jsonify(result=result)
示例4: create
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def create(self):
tdir = os.path.dirname(os.path.join(self.cpath, self.datafilename))
if not os.path.samefile(self.cpath, tdir):
return jsonify(error={'msg': 'Wrong config data filename'}), 400
fdfname = os.path.join(self.cpath, self.datafilename+'.yml')
lockfname = fdfname+'.lock'
lock = filelock.FileLock(lockfname)
try:
body = request.get_json()
except Exception as e:
return jsonify(error={'message': str(e)}), 400
try:
with lock.acquire(timeout=10):
with open(fdfname, 'w') as f:
yaml.safe_dump(body, stream=f)
except Exception as e:
return jsonify(error={
'message': str(e)
}), 500
示例5: init
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def init():
global API_CONFIG_PATH
global API_CONFIG_LOCK
config_path = os.environ.get('MM_CONFIG', None)
if config_path is None:
LOG.critical('MM_CONFIG environment variable not set')
raise RuntimeError('MM_CONFIG environment variable not set')
if not os.path.isdir(config_path):
config_path = os.path.dirname(config_path)
# init global vars
API_CONFIG_PATH = os.path.join(config_path, 'api')
API_CONFIG_LOCK = filelock.FileLock(
os.environ.get('API_CONFIG_LOCK', '/var/run/minemeld/api-config.lock')
)
_load_config(config_path)
_load_auth_dbs(config_path)
if config_path is not None:
gevent.spawn(_config_monitor, config_path)
示例6: save
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def save(self, out, timeout):
filepath = os.path.join(out, self.filename)
lockpath = filepath + '.lock'
try:
with filelock.FileLock(lockpath, timeout=timeout):
saved_assets_list = []
if os.path.isfile(filepath):
with open(filepath) as f:
saved_assets_list = json.load(f)
saved_assets_list.extend(self.cache[self.saved_idx:])
with open(filepath, 'w') as f:
json.dump(saved_assets_list, f, indent=4)
self.saved_idx = len(self.cache)
except filelock.Timeout:
logger.error('Process to write a list of assets is timeout')
示例7: get_lock
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def get_lock():
"""Create a filelock"""
# The run() method uses a file lock in the user's ~/.resilient directory to prevent multiple instances
# of resilient circuits running. You can override the lockfile name in the
# (and so allow multiple) by setting APP_LOCK_FILE in the environment.
app_lock_file = os.environ.get("APP_LOCK_FILE", "")
if not app_lock_file:
lockfile = os.path.expanduser(os.path.join("~", ".resilient", "resilient_circuits_lockfile"))
resilient_dir = os.path.dirname(lockfile)
if not os.path.exists(resilient_dir):
os.makedirs(resilient_dir)
else:
lockfile = os.path.expanduser(app_lock_file)
lock = filelock.FileLock(lockfile)
return lock
示例8: get_sbd
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def get_sbd():
# To support ChainerMN, the target directory should be locked.
with filelock.FileLock(os.path.join(download.get_dataset_directory(
'pfnet/chainercv/.lock'), 'sbd.lock')):
data_root = download.get_dataset_directory(root)
base_path = os.path.join(data_root, 'benchmark_RELEASE/dataset')
train_voc2012_file = os.path.join(base_path, 'train_voc2012.txt')
if os.path.exists(train_voc2012_file):
# skip downloading
return base_path
download_file_path = utils.cached_download(url)
ext = os.path.splitext(url)[1]
utils.extractall(download_file_path, data_root, ext)
six.moves.urllib.request.urlretrieve(
train_voc2012_url, train_voc2012_file)
_generate_voc2012_txt(base_path)
return base_path
示例9: get_voc
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def get_voc(year, split):
if year not in urls:
raise ValueError
key = year
if split == 'test' and year == '2007':
key = '2007_test'
# To support ChainerMN, the target directory should be locked.
with filelock.FileLock(os.path.join(download.get_dataset_directory(
'pfnet/chainercv/.lock'), 'voc.lock')):
data_root = download.get_dataset_directory(root)
base_path = os.path.join(data_root, 'VOCdevkit/VOC{}'.format(year))
split_file = os.path.join(
base_path, 'ImageSets/Main/{}.txt'.format(split))
if os.path.exists(split_file):
# skip downloading
return base_path
download_file_path = utils.cached_download(urls[key])
ext = os.path.splitext(urls[key])[1]
utils.extractall(download_file_path, data_root, ext)
return base_path
示例10: experiment_id
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def experiment_id(kfp_client, tmp_path_factory, worker_id):
if not worker_id:
return get_experiment_id(kfp_client)
# Locking taking as an example from
# https://github.com/pytest-dev/pytest-xdist#making-session-scoped-fixtures-execute-only-once
# get the temp directory shared by all workers
root_tmp_dir = tmp_path_factory.getbasetemp().parent
fn = root_tmp_dir / "experiment_id"
with FileLock(str(fn) + ".lock"):
if fn.is_file():
data = fn.read_text()
else:
data = get_experiment_id(kfp_client)
fn.write_text(data)
return data
示例11: setup
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def setup(self, config):
use_cuda = config.get("use_gpu") and torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.netD = Discriminator().to(self.device)
self.netD.apply(weights_init)
self.netG = Generator().to(self.device)
self.netG.apply(weights_init)
self.criterion = nn.BCELoss()
self.optimizerD = optim.Adam(
self.netD.parameters(),
lr=config.get("lr", 0.01),
betas=(beta1, 0.999))
self.optimizerG = optim.Adam(
self.netG.parameters(),
lr=config.get("lr", 0.01),
betas=(beta1, 0.999))
with FileLock(os.path.expanduser("~/.data.lock")):
self.dataloader = get_data_loader()
示例12: get_data_loaders
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def get_data_loaders():
mnist_transforms = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))])
# We add FileLock here because multiple workers will want to
# download data, and this may cause overwrites since
# DataLoader is not threadsafe.
with FileLock(os.path.expanduser("~/data.lock")):
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"~/data",
train=True,
download=True,
transform=mnist_transforms),
batch_size=64,
shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST("~/data", train=False, transform=mnist_transforms),
batch_size=64,
shuffle=True)
return train_loader, test_loader
示例13: get_data_loader
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def get_data_loader():
"""Safely downloads data. Returns training/validation set dataloader."""
mnist_transforms = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))])
# We add FileLock here because multiple workers will want to
# download data, and this may cause overwrites since
# DataLoader is not threadsafe.
with FileLock(os.path.expanduser("~/data.lock")):
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
"~/data",
train=True,
download=True,
transform=mnist_transforms),
batch_size=128,
shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST("~/data", train=False, transform=mnist_transforms),
batch_size=128,
shuffle=True)
return train_loader, test_loader
示例14: __init__
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def __init__(
self,
episode_len=None,
no_images=None
):
import filelock
from tensorflow.examples.tutorials.mnist import input_data
# we could use temporary directory for this with a context manager and
# TemporaryDirecotry, but then each test that uses mnist would re-download the data
# this way the data is not cleaned up, but we only download it once per machine
mnist_path = osp.join(tempfile.gettempdir(), 'MNIST_data')
with filelock.FileLock(mnist_path + '.lock'):
self.mnist = input_data.read_data_sets(mnist_path)
self.np_random = np.random.RandomState()
self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1))
self.action_space = Discrete(10)
self.episode_len = episode_len
self.time = 0
self.no_images = no_images
self.train_mode()
self.reset()
示例15: worker_finished
# 需要導入模塊: import filelock [as 別名]
# 或者: from filelock import FileLock [as 別名]
def worker_finished(worker_ip):
"""
The scheduler received a notification indicating an indexing worker has
finished its task.
:param worker_ip: The private IP of the worker.
:return: The target index if all workers are finished, else False.
"""
with FileLock('lock'), shelve.open('db', writeback=True) as db:
try:
_ = db['worker_statuses'][worker_ip]
db['worker_statuses'][worker_ip] = WorkerStatus.FINISHED
log.info(f'Received worker_finished signal from {worker_ip}')
except KeyError:
log.error(
'An indexer worker notified us it finished its task, but '
'we are not tracking it.'
)
for worker_key in db['worker_statuses']:
if db['worker_statuses'][worker_key] == WorkerStatus.RUNNING:
log.info(f'{worker_key} is still indexing')
return False
return db['target_index']