本文整理匯總了Python中features.extract_features方法的典型用法代碼示例。如果您正苦於以下問題:Python features.extract_features方法的具體用法?Python features.extract_features怎麽用?Python features.extract_features使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類features
的用法示例。
在下文中一共展示了features.extract_features方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_many
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run_many(self, positions, use_random_symmetry=True):
processed = list(map(features.extract_features, positions))
if use_random_symmetry:
syms_used, processed = symmetries.randomize_symmetries_feat(
processed)
outputs = self.sess.run(self.inference_output,
feed_dict={self.inference_input: processed})
if not self.inference:
probabilities, value = outputs['policy_output'], outputs['value_output']
else:
probabilities, value = outputs[0], outputs[1]
if use_random_symmetry:
probabilities = symmetries.invert_symmetries_pi(
syms_used, probabilities)
return probabilities, value
示例2: analyze_symmetries
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def analyze_symmetries(sgf_file, load_file):
with open(sgf_file) as f:
sgf_contents = f.read()
iterator = sgf_wrapper.replay_sgf(sgf_contents)
net = dual_net.DualNetwork(load_file)
for i, pwc in enumerate(iterator):
if i < 200:
continue
feats = features.extract_features(pwc.position)
variants = [symmetries.apply_symmetry_feat(s, feats) for s in symmetries.SYMMETRIES]
values = net.sess.run(
net.inference_output['value_output'],
feed_dict={net.inference_input['pos_tensor']: variants})
mean = np.mean(values)
stdev = np.std(values)
all_vals = sorted(zip(values, symmetries.SYMMETRIES))
print("{:3d} {:.3f} +/- {:.3f} min {:.3f} {} max {:.3f} {}".format(
i, mean, stdev, *all_vals[0], *all_vals[-1]))
示例3: test_make_dataset_from_sgf
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def test_make_dataset_from_sgf(self):
with tempfile.NamedTemporaryFile() as sgf_file, \
tempfile.NamedTemporaryFile() as record_file:
sgf_file.write(TEST_SGF.encode('utf8'))
sgf_file.seek(0)
preprocessing.make_dataset_from_sgf(
sgf_file.name, record_file.name)
recovered_data = self.extract_data(record_file.name)
start_pos = go.Position()
first_move = coords.from_sgf('fd')
next_pos = start_pos.play_move(first_move)
second_move = coords.from_sgf('cf')
expected_data = [
(
features.extract_features(start_pos),
preprocessing._one_hot(coords.to_flat(first_move)),
-1
), (
features.extract_features(next_pos),
preprocessing._one_hot(coords.to_flat(second_move)),
-1
)]
self.assertEqualData(expected_data, recovered_data)
示例4: test_make_dataset_from_sgf
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def test_make_dataset_from_sgf(self):
with tempfile.NamedTemporaryFile() as sgf_file, \
tempfile.NamedTemporaryFile() as record_file:
sgf_file.write(TEST_SGF.encode('utf8'))
sgf_file.seek(0)
preprocessing.make_dataset_from_sgf(
utils_test.BOARD_SIZE, sgf_file.name, record_file.name)
recovered_data = self.extract_data(record_file.name)
start_pos = go.Position(utils_test.BOARD_SIZE)
first_move = coords.from_sgf('fd')
next_pos = start_pos.play_move(first_move)
second_move = coords.from_sgf('cf')
expected_data = [
(
features.extract_features(utils_test.BOARD_SIZE, start_pos),
preprocessing._one_hot(utils_test.BOARD_SIZE, coords.to_flat(
utils_test.BOARD_SIZE, first_move)), -1
),
(
features.extract_features(utils_test.BOARD_SIZE, next_pos),
preprocessing._one_hot(utils_test.BOARD_SIZE, coords.to_flat(
utils_test.BOARD_SIZE, second_move)), -1
)
]
self.assertEqualData(expected_data, recovered_data)
示例5: run_many
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run_many(self, positions):
"""Runs inference on a list of position."""
processed = list(map(features_lib.extract_features, positions))
probabilities = []
values = []
for state in processed:
assert state.shape == (self.board_size, self.board_size,
17), str(state.shape)
result = self.engine.RunInference(state.flatten())
# If needed you can get the raw inference time from the result object.
# inference_time = result[0] # ms
policy_output = result[1][0:self.output_policy_size]
value_output = result[1][-1]
probabilities.append(policy_output)
values.append(value_output)
return probabilities, values
示例6: make_dataset_from_selfplay
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def make_dataset_from_selfplay(data_extracts):
'''
Returns an iterable of tf.Examples.
Args:
data_extracts: An iterable of (position, pi, result) tuples
'''
tf_examples = (make_tf_example(features_lib.extract_features(pos), pi, result)
for pos, pi, result in data_extracts)
return tf_examples
示例7: _make_tf_example_from_pwc
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def _make_tf_example_from_pwc(position_w_context):
features = features_lib.extract_features(position_w_context.position)
pi = _one_hot(coords.to_flat(position_w_context.next_move))
value = position_w_context.result
return make_tf_example(features, pi, value)
示例8: run
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run(self, position):
'Return a sorted list of (probability, move) tuples'
processed_position = features.extract_features(position)
probabilities = self.session.run(self.output, feed_dict={self.x: processed_position[None, :]})[0]
return probabilities.reshape([go.N, go.N])
示例9: run_many
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run_many(self, positions, use_random_symmetry=True):
"""Compute the policy and value output for given positions.
Args:
positions: A list of positions for go board status
use_random_symmetry: Apply random symmetry (defined in symmetries.py) to
the extracted features (defined in features.py) of the given positions
Returns:
probabilities, value: The policy and value outputs (defined in
dualnet_model.py)
"""
def _extract_features(positions):
return features.extract_features(self.hparams.board_size, positions)
processed = list(map(_extract_features, positions))
# processed = [
# features.extract_features(self.hparams.board_size, p) for p in positions]
if use_random_symmetry:
syms_used, processed = symmetries.randomize_symmetries_feat(processed)
# feed_dict is a dict object to provide the input examples for the step of
# inference. sess.run() returns the inference predictions (indicated by
# self.inference_output) of the given input as outputs
outputs = self.sess.run(
self.inference_output, feed_dict={self.inference_input: processed})
probabilities, value = outputs['policy_output'], outputs['value_output']
if use_random_symmetry:
probabilities = symmetries.invert_symmetries_pi(
self.hparams.board_size, syms_used, probabilities)
return probabilities, value
示例10: make_dataset_from_selfplay
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def make_dataset_from_selfplay(data_extracts, params):
"""Make an iterable of tf.Examples.
Args:
data_extracts: An iterable of (position, pi, result) tuples
params: An object of hyperparameters
Returns:
An iterable of tf.Examples.
"""
board_size = params.board_size
tf_examples = (make_tf_example(features_lib.extract_features(
board_size, pos), pi, result) for pos, pi, result in data_extracts)
return tf_examples
示例11: _make_tf_example_from_pwc
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def _make_tf_example_from_pwc(board_size, position_w_context):
features = features_lib.extract_features(
board_size, position_w_context.position)
pi = _one_hot(board_size, coords.to_flat(
board_size, position_w_context.next_move))
value = position_w_context.result
return make_tf_example(features, pi, value)
示例12: predict_on_multiple_board_states
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def predict_on_multiple_board_states(self, positions):
symmetries, processed = utils.shuffle_feature_symmetries(list(map(features.extract_features, positions)))
network_outputs = self.sess.run(self.inference_output, feed_dict={self.inference_input: processed})
action_probs, value_pred = network_outputs['policy_output'], network_outputs['value_output']
action_probs = utils.invert_policy_symmetries(symmetries, action_probs)
return action_probs, value_pred
示例13: create_dataset_from_selfplay
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def create_dataset_from_selfplay(data_extracts):
return (create_tf_train_example(extract_features(board_state), pi, result)
for board_state, pi, result in data_extracts)
示例14: run
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run(self, position):
'Return a sorted list of (probability, move) tuples'
processed_position = features.extract_features(position, features=self.features)
probabilities = self.session.run(self.output, feed_dict={self.x: processed_position[None, :]})[0]
return probabilities.reshape([go.N, go.N])
示例15: run_many
# 需要導入模塊: import features [as 別名]
# 或者: from features import extract_features [as 別名]
def run_many(self, positions):
f = get_features()
processed = [features_lib.extract_features(p, f) for p in positions]
if FLAGS.use_random_symmetry:
syms_used, processed = symmetries.randomize_symmetries_feat(
processed)
outputs = self.sess.run(self.inference_output,
feed_dict={self.inference_input: processed})
probabilities, value = outputs['policy_output'], outputs['value_output']
if FLAGS.use_random_symmetry:
probabilities = symmetries.invert_symmetries_pi(
syms_used, probabilities)
return probabilities, value