當前位置: 首頁>>代碼示例>>Python>>正文


Python fbprophet.Prophet方法代碼示例

本文整理匯總了Python中fbprophet.Prophet方法的典型用法代碼示例。如果您正苦於以下問題:Python fbprophet.Prophet方法的具體用法?Python fbprophet.Prophet怎麽用?Python fbprophet.Prophet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fbprophet的用法示例。


在下文中一共展示了fbprophet.Prophet方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_check_single_cutoff_forecast_func_calls

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_check_single_cutoff_forecast_func_calls(self):
        m = Prophet()
        m.fit(self.__df)
        mock_predict = pd.DataFrame({'ds':pd.date_range(start='2012-09-17', periods=3),
                                     'yhat':np.arange(16, 19),
                                     'yhat_lower':np.arange(15, 18),
                                     'yhat_upper': np.arange(17, 20),
                                      'y': np.arange(16.5, 19.5),
                                     'cutoff': [datetime.date(2012, 9, 15)]*3})

        # cross validation  with 3 and 7 forecasts
        for args, forecasts in ((['4 days', '10 days', '115 days'], 3),
                            (['4 days', '4 days', '115 days'], 7)):
            with patch('fbprophet.diagnostics.single_cutoff_forecast') as mock_func:
                mock_func.return_value = mock_predict
                df_cv = diagnostics.cross_validation(m, *args)
                # check single forecast function called expected number of times
                self.assertEqual(diagnostics.single_cutoff_forecast.call_count,
                                 forecasts) 
開發者ID:facebook,項目名稱:prophet,代碼行數:21,代碼來源:test_diagnostics.py

示例2: test_cross_validation_extra_regressors

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_cross_validation_extra_regressors(self):
        df = self.__df.copy()
        df['extra'] = range(df.shape[0])
        df['is_conditional_week'] = np.arange(df.shape[0]) // 7 % 2
        m = Prophet()
        m.add_seasonality(name='monthly', period=30.5, fourier_order=5)
        m.add_seasonality(name='conditional_weekly', period=7, fourier_order=3,
                          prior_scale=2., condition_name='is_conditional_week')
        m.add_regressor('extra')
        m.fit(df)
        df_cv = diagnostics.cross_validation(
            m, horizon='4 days', period='4 days', initial='135 days')
        self.assertEqual(len(np.unique(df_cv['cutoff'])), 2)
        period = pd.Timedelta('4 days')
        dc = df_cv['cutoff'].diff()
        dc = dc[dc > pd.Timedelta(0)].min()
        self.assertTrue(dc >= period)
        self.assertTrue((df_cv['cutoff'] < df_cv['ds']).all())
        df_merged = pd.merge(df_cv, self.__df, 'left', on='ds')
        self.assertAlmostEqual(
            np.sum((df_merged['y_x'] - df_merged['y_y']) ** 2), 0.0) 
開發者ID:facebook,項目名稱:prophet,代碼行數:23,代碼來源:test_diagnostics.py

示例3: main

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def main(args):
    data = pd.read_csv(DATA_FILE, parse_dates=True, index_col='timestamp')

    # Re-group data to fit for Prophet data format
    data['ds'] = data.index
    data = data.reindex(columns=['ds', 'v0', 'v1', 'result'])
    data = data.rename(columns={"v0": 'y'})

    model = Prophet()
    model.fit(data.ix[data.index[0:500]])

    future = model.make_future_dataframe(120, 'H')
    forecast = model.predict(future)

    model.plot(forecast)
    model.plot_components(forecast)

    plt.show() 
開發者ID:jsonbruce,項目名稱:MTSAnomalyDetection,代碼行數:20,代碼來源:prophet_model.py

示例4: test_cross_validation_logistic_or_flat_growth

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_cross_validation_logistic_or_flat_growth(self):
        params = (x for x in ['logistic', 'flat'])
        for growth in params:
            with self.subTest(i=growth):
                df = self.__df.copy()
                if growth == "logistic":
                    df['cap'] = 40
                m = Prophet(growth=growth).fit(df)
                df_cv = diagnostics.cross_validation(
                    m, horizon='1 days', period='1 days', initial='140 days')
                self.assertEqual(len(np.unique(df_cv['cutoff'])), 2)
                self.assertTrue((df_cv['cutoff'] < df_cv['ds']).all())
                df_merged = pd.merge(df_cv, self.__df, 'left', on='ds')
                self.assertAlmostEqual(
                    np.sum((df_merged['y_x'] - df_merged['y_y']) ** 2), 0.0) 
開發者ID:facebook,項目名稱:prophet,代碼行數:17,代碼來源:test_diagnostics.py

示例5: test_cross_validation_custom_cutoffs

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_cross_validation_custom_cutoffs(self):
        m = Prophet()
        m.fit(self.__df)
        # When specify a list of cutoffs
        #  the cutoff dates in df_cv are those specified
        df_cv1 = diagnostics.cross_validation(
            m,
            horizon='32 days',
            period='10 days',
            cutoffs=[pd.Timestamp('2012-07-31'), pd.Timestamp('2012-08-31')])
        self.assertEqual(len(df_cv1['cutoff'].unique()), 2) 
開發者ID:facebook,項目名稱:prophet,代碼行數:13,代碼來源:test_diagnostics.py

示例6: test_cross_validation_uncertainty_disabled

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_cross_validation_uncertainty_disabled(self):
        df = self.__df.copy()
        for uncertainty in [0, False]:
            m = Prophet(uncertainty_samples=uncertainty)
            m.fit(df, algorithm='Newton')
            df_cv = diagnostics.cross_validation(
                m, horizon='4 days', period='4 days', initial='115 days')
            expected_cols = ['ds', 'yhat', 'y', 'cutoff']
            self.assertTrue(all(col in expected_cols for col in df_cv.columns.tolist()))
            df_p = diagnostics.performance_metrics(df_cv)
            self.assertTrue('coverage' not in df_p.columns) 
開發者ID:facebook,項目名稱:prophet,代碼行數:13,代碼來源:test_diagnostics.py

示例7: test_fit

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_fit(self):
        train = pd.DataFrame({
            'ds': np.array(['2012-05-18', '2012-05-20']),
            'y': np.array([38.23, 21.25])
        })

        forecaster = Prophet(mcmc_samples=1)
        forecaster.fit(train, control={'adapt_engaged': False}) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:10,代碼來源:test_fbprophet.py

示例8: anomaly_fbprophet

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def anomaly_fbprophet(lista_datos,num_fut,desv_mse=0,train=True,name='model-name'):

    lista_puntos = np.arange(0, len(lista_datos),1)
    df, df_train, df_test = create_train_test(lista_puntos, lista_datos)

    m = Prophet()
    df_temp = pd.DataFrame(df_train['valores'])
    df_temp.rename(columns={"valores": "y"},inplace=True)
    df_temp['ds']= pd.date_range(datetime.today(), periods=len(df_temp['y'])).strftime("%Y/%m/%d").tolist()
    m.fit(df_temp)

    future = m.make_future_dataframe(len(df_test['valores']))
    future.tail()
    forecast = m.predict(future)

    engine = engine_output_creation('fbprophet')
    engine.alerts_creation(forecast[-len(df_test['valores']):]['yhat'],df_test)


        ############## ANOMALY FINISHED,
    print ("Anomaly finished. Start forecasting")
        ############## FORECAST START
    df_temp = pd.DataFrame(df['valores'])
    df_temp.rename(columns={"valores": "y"},inplace=True)
    df_temp['ds']= pd.date_range(datetime.today(), periods=len(df_temp['y'])).strftime("%Y/%m/%d").tolist()
    m_future = Prophet()

    m_future.fit(df_temp)

    future = m_future.make_future_dataframe(num_fut)
    future.tail()
    forecast = m_future.predict(future)

    engine.forecast_creation( forecast[-num_fut:]['yhat'], len(lista_datos),num_fut)
    engine.metrics_generation( df_test['valores'].values, forecast[-len(df_test['valores']):]['yhat'])
    engine.debug_creation(forecast[-len(df['valores']):]['yhat'].tolist(),df_test)

    return (engine.engine_output) 
開發者ID:BBVA,項目名稱:timecop,代碼行數:40,代碼來源:fbprophet.py

示例9: fit

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def fit(self, df: pd.DataFrame) -> None:
        """
        Fit Prophet model on normal (inlier) data.

        Parameters
        ----------
        df
            Dataframe with columns `ds` with timestamps and `y` with target values.
        """
        if self.cap:
            df['cap'] = self.cap
        self.model.fit(df) 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:14,代碼來源:prophet.py

示例10: _upload_graph

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def _upload_graph(self, model, forecast):
        import boto3
        import matplotlib as mlp

        # Need to plot graph for Prophet
        mlp.use("agg")
        from matplotlib import pyplot as plt

        fig1 = model.plot(forecast)
        fig2 = model.plot_components(forecast)
        predict_fig_data = io.BytesIO()
        component_fig_data = io.BytesIO()
        fig1.savefig(predict_fig_data, format="png")
        fig2.savefig(component_fig_data, format="png")
        predict_fig_data.seek(0)
        component_fig_data.seek(0)

        # Upload figures to S3
        # boto3 assuming environment variables "AWS_ACCESS_KEY_ID" and "AWS_SECRET_ACCESS_KEY":
        # http://boto3.readthedocs.io/en/latest/guide/configuration.html#environment-variables
        s3 = boto3.resource("s3")

        predicted_fig_file = "predicted.png"
        component_fig_file = "component.png"

        # ACL should be chosen with your purpose
        s3.Object(os.environ["S3_BUCKET"], predicted_fig_file).put(
            ACL="public-read", Body=predict_fig_data, ContentType="image/png"
        )
        s3.Object(os.environ["S3_BUCKET"], component_fig_file).put(
            ACL="public-read", Body=component_fig_data, ContentType="image/png"
        ) 
開發者ID:treasure-data,項目名稱:treasure-boxes,代碼行數:34,代碼來源:predict.py

示例11: load_context

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def load_context(self, context):
        from fbprophet import Prophet
        return 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:5,代碼來源:train.py

示例12: _run_prophet

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def _run_prophet(self, data: ProphetDataEntry, params: dict) -> np.array:
        """
        Construct and run a :class:`Prophet` model on the given
        :class:`ProphetDataEntry` and return the resulting array of samples.
        """

        prophet = self.init_model(Prophet(**params))

        # Register dynamic features as regressors to the model
        for i in range(len(data.feat_dynamic_real)):
            prophet.add_regressor(feat_name(i))

        prophet.fit(data.prophet_training_data)

        future_df = prophet.make_future_dataframe(
            periods=self.prediction_length,
            freq=self.freq,
            include_history=False,
        )

        # Add dynamic features in the prediction range
        for i, feature in enumerate(data.feat_dynamic_real):
            future_df[feat_name(i)] = feature[data.train_length :]

        prophet_result = prophet.predictive_samples(future_df)

        return prophet_result["yhat"].T 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:29,代碼來源:_predictor.py

示例13: test_simple_serialize

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_simple_serialize(self):
        m = Prophet()
        days = 30
        N = DATA.shape[0]
        df = DATA.head(N - days)
        m.fit(df)

        future = m.make_future_dataframe(2, include_history=False)
        fcst = m.predict(future)

        model_str = model_to_json(m)
        # Make sure json doesn't get too large in the future
        self.assertTrue(len(model_str) < 200000)
        z = json.loads(model_str)
        self.assertEqual(z['__fbprophet_version'], '0.6.1.dev0')

        m2 = model_from_json(model_str)

        # Check that m and m2 are equal
        self.assertEqual(m.__dict__.keys(), m2.__dict__.keys())
        for k, v in m.__dict__.items():
            if k in ['stan_fit', 'stan_backend']:
                continue
            if k == 'params':
                self.assertEqual(v.keys(), m2.params.keys())
                for kk, vv in v.items():
                    self.assertTrue(np.array_equal(vv, m2.params[kk]))
            elif k in PD_SERIES and v is not None:
                self.assertTrue(v.equals(m2.__dict__[k]))
            elif k in PD_DATAFRAME and v is not None:
                pd.testing.assert_frame_equal(v, m2.__dict__[k])
            elif k == 'changepoints_t':
                self.assertTrue(np.array_equal(v, m.__dict__[k]))
            else:
                self.assertEqual(v, m2.__dict__[k])
        self.assertTrue(m2.stan_fit is None)
        self.assertTrue(m2.stan_backend is None)

        # Check that m2 makes the same forecast
        future2 = m2.make_future_dataframe(2, include_history=False)
        fcst2 = m2.predict(future2)

        self.assertTrue(np.array_equal(fcst['yhat'].values, fcst2['yhat'].values)) 
開發者ID:facebook,項目名稱:prophet,代碼行數:45,代碼來源:test_serialize.py

示例14: test_cross_validation

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_cross_validation(self):
        m = Prophet()
        m.fit(self.__df)
        # Calculate the number of cutoff points(k)
        horizon = pd.Timedelta('4 days')
        period = pd.Timedelta('10 days')
        initial = pd.Timedelta('115 days')
        methods = [None, 'processes', 'threads', CustomParallelBackend()]

        try:
            from dask.distributed import Client
            client = Client(processes=False)  # noqa
            methods.append("dask")
        except ImportError:
            pass

        for parallel in methods:
            df_cv = diagnostics.cross_validation(
                m, horizon='4 days', period='10 days', initial='115 days',
                parallel=parallel)
            self.assertEqual(len(np.unique(df_cv['cutoff'])), 3)
            self.assertEqual(max(df_cv['ds'] - df_cv['cutoff']), horizon)
            self.assertTrue(min(df_cv['cutoff']) >= min(self.__df['ds']) + initial)
            dc = df_cv['cutoff'].diff()
            dc = dc[dc > pd.Timedelta(0)].min()
            self.assertTrue(dc >= period)
            self.assertTrue((df_cv['cutoff'] < df_cv['ds']).all())
            # Each y in df_cv and self.__df with same ds should be equal
            df_merged = pd.merge(df_cv, self.__df, 'left', on='ds')
            self.assertAlmostEqual(
                np.sum((df_merged['y_x'] - df_merged['y_y']) ** 2), 0.0)
            df_cv = diagnostics.cross_validation(
                m, horizon='4 days', period='10 days', initial='135 days')
            self.assertEqual(len(np.unique(df_cv['cutoff'])), 1)
            with self.assertRaises(ValueError):
                diagnostics.cross_validation(
                    m, horizon='10 days', period='10 days', initial='140 days')

        # invalid alias
        with self.assertRaises(ValueError, match="'parallel' should be one"):
            diagnostics.cross_validation(m, horizon="4 days", parallel="bad")

        # no map method
        with self.assertRaises(ValueError, match="'parallel' should be one"):
            diagnostics.cross_validation(m, horizon="4 days", parallel=object()) 
開發者ID:facebook,項目名稱:prophet,代碼行數:47,代碼來源:test_diagnostics.py

示例15: test_performance_metrics

# 需要導入模塊: import fbprophet [as 別名]
# 或者: from fbprophet import Prophet [as 別名]
def test_performance_metrics(self):
        m = Prophet()
        m.fit(self.__df)
        df_cv = diagnostics.cross_validation(
            m, horizon='4 days', period='10 days', initial='90 days')
        # Aggregation level none
        df_none = diagnostics.performance_metrics(df_cv, rolling_window=-1)
        self.assertEqual(
            set(df_none.columns),
            {'horizon', 'coverage', 'mae', 'mape', 'mdape', 'mse', 'rmse'},
        )
        self.assertEqual(df_none.shape[0], 16)
        # Aggregation level 0
        df_0 = diagnostics.performance_metrics(df_cv, rolling_window=0)
        self.assertEqual(len(df_0), 4)
        self.assertEqual(len(df_0['horizon'].unique()), 4)
        # Aggregation level 0.2
        df_horizon = diagnostics.performance_metrics(df_cv, rolling_window=0.2)
        self.assertEqual(len(df_horizon), 4)
        self.assertEqual(len(df_horizon['horizon'].unique()), 4)
        # Aggregation level all
        df_all = diagnostics.performance_metrics(df_cv, rolling_window=1)
        self.assertEqual(df_all.shape[0], 1)
        for metric in ['mse', 'mape', 'mae', 'coverage']:
            self.assertAlmostEqual(df_all[metric].values[0], df_none[metric].mean())
        self.assertAlmostEqual(df_all['mdape'].values[0], df_none['mdape'].median())
        # Custom list of metrics
        df_horizon = diagnostics.performance_metrics(
            df_cv, metrics=['coverage', 'mse'],
        )
        self.assertEqual(
            set(df_horizon.columns),
            {'coverage', 'mse', 'horizon'},
        )
        # Skip MAPE
        df_cv.loc[0, 'y'] = 0.
        df_horizon = diagnostics.performance_metrics(
            df_cv, metrics=['coverage', 'mape'],
        )
        self.assertEqual(
            set(df_horizon.columns),
            {'coverage', 'horizon'},
        )
        df_horizon = diagnostics.performance_metrics(
            df_cv, metrics=['mape'],
        )
        self.assertIsNone(df_horizon)
        # List of metrics containing non-valid metrics
        with self.assertRaises(ValueError):
            diagnostics.performance_metrics(
                df_cv, metrics=['mse', 'error_metric'],
            ) 
開發者ID:facebook,項目名稱:prophet,代碼行數:54,代碼來源:test_diagnostics.py


注:本文中的fbprophet.Prophet方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。