當前位置: 首頁>>代碼示例>>Python>>正文


Python fastdtw.fastdtw方法代碼示例

本文整理匯總了Python中fastdtw.fastdtw方法的典型用法代碼示例。如果您正苦於以下問題:Python fastdtw.fastdtw方法的具體用法?Python fastdtw.fastdtw怎麽用?Python fastdtw.fastdtw使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fastdtw的用法示例。


在下文中一共展示了fastdtw.fastdtw方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_dtw_dist

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def compute_dtw_dist(part_list, degreeList, dist_func):
    dtw_dist = {}
    for v1, nbs in part_list:
        lists_v1 = degreeList[v1]  # lists_v1 :orderd degree list of v1
        for v2 in nbs:
            lists_v2 = degreeList[v2]  # lists_v1 :orderd degree list of v2
            max_layer = min(len(lists_v1), len(lists_v2))  # valid layer
            dtw_dist[v1, v2] = {}
            for layer in range(0, max_layer):
                dist, path = fastdtw(
                    lists_v1[layer], lists_v2[layer], radius=1, dist=dist_func)
                dtw_dist[v1, v2][layer] = dist
    return dtw_dist 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:15,代碼來源:struc2vec.py

示例2: calc_distances

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def calc_distances(part, compactDegree = False):

    vertices = restoreVariableFromDisk('split-vertices-'+str(part))
    degreeList = restoreVariableFromDisk('split-degreeList-'+str(part))

    distances = {}

    if compactDegree:
        dist_func = cost_max
    else:
        dist_func = cost

    for v1,nbs in vertices.iteritems():
        lists_v1 = degreeList[v1]

        for v2 in nbs:
            t00 = time()
            lists_v2 = degreeList[v2]

            max_layer = min(len(lists_v1),len(lists_v2))
            distances[v1,v2] = {}

            for layer in range(0,max_layer):
                dist, path = fastdtw(lists_v1[layer],lists_v2[layer],radius=1,dist=dist_func)

                distances[v1,v2][layer] = dist

            t11 = time()
            logging.info('fastDTW between vertices ({}, {}). Time: {}s'.format(v1,v2,(t11-t00)))


    preprocess_consolides_distances(distances)
    saveVariableOnDisk(distances,'distances-'+str(part))
    return 
開發者ID:leoribeiro,項目名稱:struc2vec,代碼行數:36,代碼來源:algorithms_distances.py

示例3: calc_distances_all

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def calc_distances_all(vertices,list_vertices,degreeList,part, compactDegree = False):

    distances = {}
    cont = 0

    if compactDegree:
        dist_func = cost_max
    else:
        dist_func = cost

    for v1 in vertices:
        lists_v1 = degreeList[v1]

        for v2 in list_vertices[cont]:
            lists_v2 = degreeList[v2]
            
            max_layer = min(len(lists_v1),len(lists_v2))
            distances[v1,v2] = {}

            for layer in range(0,max_layer):
                #t0 = time()
                dist, path = fastdtw(lists_v1[layer],lists_v2[layer],radius=1,dist=dist_func)
                #t1 = time()
                #logging.info('D ({} , {}), Tempo fastDTW da camada {} : {}s . Distância: {}'.format(v1,v2,layer,(t1-t0),dist))    
                distances[v1,v2][layer] = dist
                

        cont += 1

    preprocess_consolides_distances(distances)
    saveVariableOnDisk(distances,'distances-'+str(part))
    return 
開發者ID:leoribeiro,項目名稱:struc2vec,代碼行數:34,代碼來源:algorithms_distances.py

示例4: get_similarity_matrix

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def get_similarity_matrix(self) -> np.ndarray:
        """
        Returns time-series similarity matrix computed using dynamic time warping.

        Returns:
            an asset-to-asset similarity matrix.
        Raises:
            QiskitFinanceError: no data loaded
        """
        try:
            if not self._data:
                raise QiskitFinanceError(
                    'No data loaded, yet. Please run the method run() first to load the data.'
                )
        except AttributeError:
            raise QiskitFinanceError(
                'No data loaded, yet. Please run the method run() first to load the data.'
            )
        self.rho = np.zeros((self._n, self._n))
        for i_i in range(0, self._n):
            self.rho[i_i, i_i] = 1.
            for j_j in range(i_i + 1, self._n):
                this_rho, _ = fastdtw.fastdtw(self._data[i_i], self._data[j_j])
                this_rho = 1.0 / this_rho
                self.rho[i_i, j_j] = this_rho
                self.rho[j_j, i_i] = this_rho
        return self.rho

    # gets coordinates suitable for plotting
    # it does not have to be overridden in non-abstract derived classes. 
開發者ID:Qiskit,項目名稱:qiskit-aqua,代碼行數:32,代碼來源:_base_data_provider.py

示例5: compare_metrics

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def compare_metrics(X, num=10):
    """
    """
    fig, axarr = plt.subplots(num, 4, figsize=(15, 15))
    xx = np.arange(30)
    fig.suptitle(' '.join(['dtw', 'cos', 'euc', 'rbf']))
    for (col, distance_measure) in enumerate([fastdtw, cos_dist, euclidean, my_rbf]):
        dists = []
        for i in range(num):
            try:
                d, _ = distance_measure(X[0], X[i])
            except TypeError:
                d = distance_measure(X[0], X[i])
            if col == 3:
                d = -d
            dists.append(dtw)
        # now, plot in order
        for (i, j) in enumerate(np.argsort(dists)):
            axarr[i, col].plot(xx, X[j])
            axarr[i, col].plot(xx, X[0], alpha=0.5)
            dtw, _ = fastdtw(X[0], X[j])
            title = '%.1f %.1f %.1f %.1f' % (dtw, cos_dist(X[0], X[j]), euclidean(X[0], X[j]), my_rbf(X[0], X[j]))
            #title = '%.1f' % (dtw)
            axarr[i, col].set_title(title)
            axarr[i, col].set_ylim(-1.1, 1.1)
    plt.tight_layout()
    plt.savefig("dtw.png")
    plt.clf()
    plt.close()
    return True 
開發者ID:ratschlab,項目名稱:RGAN,代碼行數:32,代碼來源:kernel.py

示例6: read_and_synthesize

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def read_and_synthesize(file_list, arch, MCD, input_feat, output_feat):
    
    for i, (bin_path, src_feat_path, trg_feat_path) in enumerate(file_list):
        input_feat_dim = arch['feat_param']['dim'][input_feat]
        basename = os.path.splitext(os.path.split(bin_path)[-1])[0]
        
        # read source features , target features and converted mcc
        src_data = Whole_feature_reader(src_feat_path, arch['feat_param'])
        trg_data = Whole_feature_reader(trg_feat_path, arch['feat_param'])
        cvt = np.fromfile(bin_path, dtype = np.float32).reshape([-1, arch['feat_param']['dim'][output_feat]])

        # Handle if not mcc
        if output_feat == 'sp':
            cvt = np.power(10., cvt)
            en_cvt = np.expand_dims(src_data['en_sp'], 1) * cvt
            mcc_cvt = pysptk.sp2mc(en_cvt, arch['feat_param']['mcep_dim'], arch['feat_param']['mcep_alpha'])[:, 1:]
        elif output_feat == 'mcc':
            mcc_cvt = cvt
        else:
            logging.info('Currently do not support types other than mcc and sp.' )
            raise ValueError

        # non-silence parts
        trg_idx = np.where(trg_data['f0']>0)[0]
        trg_mcc = trg_data['mcc'][trg_idx]
        src_idx = np.where(src_data['f0']>0)[0]
        mcc_cvt = mcc_cvt[src_idx]

        # DTW
        _, path = fastdtw(mcc_cvt, trg_mcc, dist=scipy.spatial.distance.euclidean)
        twf = np.array(path).T
        cvt_mcc_dtw = mcc_cvt[twf[0]]
        trg_mcc_dtw = trg_mcc[twf[1]]

        # MCD 
        diff2sum = np.sum((cvt_mcc_dtw - trg_mcc_dtw)**2, 1)
        mcd = np.mean(10.0 / np.log(10.0) * np.sqrt(2 * diff2sum), 0)
        logging.info('{} {}'.format(basename, mcd))
        MCD.append(mcd) 
開發者ID:unilight,項目名稱:cdvae-vc,代碼行數:41,代碼來源:mcd_calculate.py

示例7: __init__

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def __init__(self, x, y, dist=lambda x, y: numpy.linalg.norm(x - y), radius=1) -> None:
        assert x.ndim == 2 and y.ndim == 2

        _, path = fastdtw.fastdtw(x, y, radius=radius, dist=dist)
        path = numpy.array(path)
        self.normed_path_x = path[:, 0] / len(x)
        self.normed_path_y = path[:, 1] / len(y) 
開發者ID:Hiroshiba,項目名稱:become-yukarin,代碼行數:9,代碼來源:utility.py

示例8: calc_distances

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def calc_distances(part, compactDegree=False):
    vertices = restoreVariableFromDisk('split-vertices-' + str(part))
    degreeList = restoreVariableFromDisk('split-degreeList-' + str(part))

    distances = {}

    if compactDegree:
        dist_func = ct_max
    else:
        dist_func = ct

    for v1, nbs in vertices.items():
        lists_v1 = degreeList[v1]

        for v2 in nbs:
            t00 = time()
            lists_v2 = degreeList[v2]

            max_layer = min(len(lists_v1), len(lists_v2))
            distances[v1, v2] = {}

            for layer in range(0, max_layer):
                dist, path = fastdtw(lists_v1[layer], lists_v2[layer], radius=1, dist=dist_func)

                distances[v1, v2][layer] = dist

            t11 = time()
            logging.info('fastDTW between vertices ({}, {}). Time: {}s'.format(v1, v2, (t11 - t00)))

    preprocess_consolides_distances(distances)
    saveVariableOnDisk(distances, 'distances-' + str(part))
    return 
開發者ID:xiangyue9607,項目名稱:BioNEV,代碼行數:34,代碼來源:algorithms_distances.py

示例9: calc_distances_all

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def calc_distances_all(vertices, list_vertices, degreeList, part, compactDegree=False):
    distances = {}
    cont = 0

    if compactDegree:
        dist_func = ct_max
    else:
        dist_func = ct

    for v1 in vertices:
        lists_v1 = degreeList[v1]

        for v2 in list_vertices[cont]:
            lists_v2 = degreeList[v2]

            max_layer = min(len(lists_v1), len(lists_v2))
            distances[v1, v2] = {}

            for layer in range(0, max_layer):
                # t0 = time()
                dist, path = fastdtw(lists_v1[layer], lists_v2[layer], radius=1, dist=dist_func)
                # t1 = time()
                # logging.info('D ({} , {}), Tempo fastDTW da camada {} : {}s . Distância: {}'.format(v1,v2,layer,(t1-t0),dist))
                distances[v1, v2][layer] = dist

        cont += 1

    preprocess_consolides_distances(distances)
    saveVariableOnDisk(distances, 'distances-' + str(part))
    return 
開發者ID:xiangyue9607,項目名稱:BioNEV,代碼行數:32,代碼來源:algorithms_distances.py

示例10: mel_cepstral_distorision

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def mel_cepstral_distorision(S1, S2, num_mfcc):
  
    def mcd(s1, s2):
        diff = s1 - s2
        return np.average(np.sqrt(np.sum(diff*diff, axis=0)))

    x, y = get_spectrogram_mfcc(S1, num_mfcc)[1:], get_spectrogram_mfcc(S2, num_mfcc)[1:]

    x, y = x.T, y.T
    _, path = fastdtw(x, y, dist=mcd)     
    pathx, pathy = map(list,zip(*path))    
    x, y = x[pathx].T, y[pathy].T     
        
    return mcd(x, y) 
開發者ID:Tomiinek,項目名稱:Multilingual_Text_to_Speech,代碼行數:16,代碼來源:mcd_request.py

示例11: mel_cepstral_distorision

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def mel_cepstral_distorision(S1, S2, mode):
    """Compute Mel Cepstral Distorsion between two mel spectrograms.

    Arguments:
        S1 and S2 -- mel spectrograms
        mode -- 'cut' to cut off frames of longer seq.
                'stretch' to stretch linearly the shorter seq.
                'dtw' to compute DTW with minimal possible MCD
    """

    def mcd(s1, s2):
        diff = s1 - s2
        return np.average(np.sqrt(np.sum(diff*diff, axis=0)))

    x, y = get_spectrogram_mfcc(S1)[1:], get_spectrogram_mfcc(S2)[1:]

    if mode == 'cut':
        if y.shape[1] > x.shape[1]: y = y[:,:x.shape[1]]
        if x.shape[1] > y.shape[1]: x = x[:,:y.shape[1]]

    elif mode == 'stretch':
        if x.shape[1] > y.shape[1]:
            m = x.shape[1]
            y = np.array([y[:, i * y.shape[1]//m] for i in range(m)]).T
        else:
            m = y.shape[1]
            x = np.array([x[:, i * x.shape[1]//m] for i in range(m)]).T

    elif mode == 'dtw':       
        x, y = x.T, y.T
        _, path = fastdtw(x, y, dist=mcd)     
        pathx, pathy = map(list,zip(*path))    
        x, y = x[pathx].T, y[pathy].T

    return mcd(x, y) 
開發者ID:Tomiinek,項目名稱:Multilingual_Text_to_Speech,代碼行數:37,代碼來源:audio.py

示例12: estimate_twf

# 需要導入模塊: import fastdtw [as 別名]
# 或者: from fastdtw import fastdtw [as 別名]
def estimate_twf(orgdata, tardata, distance='melcd', fast=True, otflag=None):
    """time warping function estimator

    Parameters
    ---------
    orgdata : array, shape(`T_org`, `dim`)
        Array of source feature
    tardata : array, shape(`T_tar`, `dim`)
        Array of target feature
    distance : str, optional
        distance function
        `melcd` : mel-cepstrum distortion
    fast : bool, optional
        Use fastdtw instead of dtw
        Default set to `True`
    otflag : str,
        Perform alignment into either original or target length
        `org` : align into original length
        `tar` : align into target length
        Default set to None

    Returns
    ---------
    twf : array, shape(`2`, `T`)
        Time warping function between original and target
    """

    if distance == 'melcd':
        def distance_func(x, y): return melcd(x, y)
    else:
        raise ValueError('other distance metrics than melcd does not support.')

    if otflag is None:
        # use dtw or fastdtw
        if fast:
            _, path = fastdtw(orgdata, tardata, dist=distance_func)
            twf = np.array(path).T
        else:
            _, _, _, twf = dtw(orgdata, tardata, distance_func)
    else:
        # use dtw_c to align target/original feature vector
        ldim = orgdata.shape[1] - 1
        if otflag == 'org':
            _, twf, _, _ = dtw_c.dtw_org_to_trg(tardata, orgdata,
                                                0, ldim, 5.0, 100.0, 100.0)
        else:
            _, twf, _, _ = dtw_c.dtw_org_to_trg(orgdata, tardata,
                                                0, ldim, 5.0, 100.0, 100.0)
        twf[:, 1] = np.array(range(twf.shape[0]))  # replace target index by frame number
        twf = twf.T
        if otflag == 'org':
            twf = twf[::-1, :]  # swap cols
            assert twf.shape[0] == orgdata.shape[0]
        else:
            assert twf.shape[1] == tardata.shape[0]

    return twf 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:59,代碼來源:twf.py


注:本文中的fastdtw.fastdtw方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。