當前位置: 首頁>>代碼示例>>Python>>正文


Python fastapi.UploadFile方法代碼示例

本文整理匯總了Python中fastapi.UploadFile方法的典型用法代碼示例。如果您正苦於以下問題:Python fastapi.UploadFile方法的具體用法?Python fastapi.UploadFile怎麽用?Python fastapi.UploadFile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fastapi的用法示例。


在下文中一共展示了fastapi.UploadFile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detect_custom

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def detect_custom(model: str = Form(...), image: UploadFile = File(...)):
	"""
	Performs a prediction for a specified image using one of the available models.
	:param model: Model name or model hash
	:param image: Image file
	:return: Model's Bounding boxes
	"""
	draw_boxes = False
	predict_batch = False
	try:
		output = await dl_service.run_model(model, image, draw_boxes, predict_batch)
		error_logging.info('request successful;' + str(output))
		return output
	except ApplicationError as e:
		error_logging.warning(model + ';' + str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		error_logging.error(model + ' ' + str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Inference-API-CPU,代碼行數:21,代碼來源:start.py

示例2: run_model

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def run_model(model_name: str, input_data: UploadFile = File(...)):
	"""
	Performs a prediction by giving both model name and image file.
	:param model_name: Model name
	:param input_data: An image file
	:return: APIResponse containing the prediction's bounding boxes
	"""
	try:
		output = await dl_service.run_model(model_name, input_data, draw=False, predict_batch=False)
		error_logging.info('request successful;' + str(output))
		return ApiResponse(data=output)
	except ApplicationError as e:
		error_logging.warning(model_name + ';' + str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		error_logging.error(model_name + ' ' + str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Inference-API-CPU,代碼行數:19,代碼來源:start.py

示例3: run_model_batch

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def run_model_batch(model_name: str, input_data: List[UploadFile] = File(...)):
	"""
	Performs a prediction by giving both model name and image file(s).
	:param model_name: Model name
	:param input_data: A batch of image files or a single image file
	:return: APIResponse containing prediction(s) bounding boxes
	"""
	try:
		output = await dl_service.run_model(model_name, input_data, draw=False, predict_batch=True)
		error_logging.info('request successful;' + str(output))
		return ApiResponse(data=output)
	except ApplicationError as e:
		error_logging.warning(model_name + ';' + str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		print(e)
		error_logging.error(model_name + ' ' + str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Inference-API-CPU,代碼行數:20,代碼來源:start.py

示例4: predict_image

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def predict_image(model_name: str, input_data: UploadFile = File(...)):
	"""
	Draws bounding box(es) on image and returns it.
	:param model_name: Model name
	:param input_data: Image file
	:return: Image file
	"""
	try:
		output = await dl_service.run_model(model_name, input_data, draw=True, predict_batch=False)
		error_logging.info('request successful;' + str(output))
		return FileResponse("/main/result.jpg", media_type="image/jpg")
	except ApplicationError as e:
		error_logging.warning(model_name + ';' + str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		error_logging.error(model_name + ' ' + str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Inference-API-CPU,代碼行數:19,代碼來源:start.py

示例5: create_site_template

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def create_site_template(
    db: Session = Depends(get_db),
    name: str = Form(...),
    zip_file: UploadFile = File(..., alias='zipFile'),
    remark: Union[str, None] = Form(None),
):
    site_template_profile = dict(
        name=name,
        remark=remark,
        zip_file_name=zip_file.filename,
        zip_file_content=await zip_file.read()
    )
    created_data = crud_site_template.create_site_template(
        db, site_template_profile
    )
    return dict(result=created_data) 
開發者ID:QAX-A-Team,項目名稱:LuWu,代碼行數:18,代碼來源:config.py

示例6: detect_robotron

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def detect_robotron(request: Request, background_tasks: BackgroundTasks, model: str = Form(...), image: UploadFile = File(...)):
	"""
	Performs a prediction for a specified image using one of the available models.
	:param request: Used if background tasks was enabled
	:param background_tasks: Used if background tasks was enabled
	:param model: Model name or model hash
	:param image: Image file
	:return: Model's Bounding boxes
	"""
	draw_boxes = False
	predict_batch = False
	try:
		request_start = time.time()
		output = await dl_service.run_model(model, image, draw_boxes, predict_batch)
		# background_tasks.add_task(metrics_collector,'detect',image, output, request, request_start)
		error_logging.info('request successful;' + str(output))
		return output
	except ApplicationError as e:
		error_logging.warning(model+';'+str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		error_logging.error(model+' '+str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Training-GUI,代碼行數:25,代碼來源:start.py

示例7: run_model

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def run_model(model_name: str, input_data: UploadFile = File(...)):
	"""
	Performs a prediction by giving both model name and image file.
	:param model_name: Model name
	:param input_data: An image file
	:return: APIResponse containing the prediction's bounding boxes
	"""
	draw_boxes = False
	predict_batch = False
	try:
		output = await dl_service.run_model(model_name, input_data, draw_boxes, predict_batch)
		error_logging.info('request successful;' + str(output))
		return ApiResponse(data=output)
	except ApplicationError as e:
		error_logging.warning(model_name+';'+str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		error_logging.error(model_name+' '+str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Training-GUI,代碼行數:21,代碼來源:start.py

示例8: run_model_batch

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def run_model_batch(model_name: str, input_data: List[UploadFile] = File(...)):
	"""
	Performs a prediction by giving both model name and image file(s).
	:param model_name: Model name
	:param input_data: A batch of image files or a single image file
	:return: APIResponse containing prediction(s) bounding boxes
	"""
	draw_boxes = False
	predict_batch = True
	try:
		output = await dl_service.run_model(model_name, input_data, draw_boxes, predict_batch)
		error_logging.info('request successful;' + str(output))
		return ApiResponse(data=output)
	except ApplicationError as e:
		error_logging.warning(model_name+';'+str(e))
		return ApiResponse(success=False, error=e)
	except Exception as e:
		print(e)
		error_logging.error(model_name+' '+str(e))
		return ApiResponse(success=False, error='unexpected server error') 
開發者ID:BMW-InnovationLab,項目名稱:BMW-TensorFlow-Training-GUI,代碼行數:22,代碼來源:start.py

示例9: create_upload_files

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def create_upload_files(files: List[UploadFile] = File(...)):
    return {"filenames": [file.filename for file in files]} 
開發者ID:tiangolo,項目名稱:fastapi,代碼行數:4,代碼來源:tutorial002.py

示例10: create_upload_file

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def create_upload_file(file: UploadFile = File(...)):
    return {"filename": file.filename} 
開發者ID:tiangolo,項目名稱:fastapi,代碼行數:4,代碼來源:tutorial001.py

示例11: create_file

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def create_file(
    file: bytes = File(...), fileb: UploadFile = File(...), token: str = Form(...)
):
    return {
        "file_size": len(file),
        "token": token,
        "fileb_content_type": fileb.content_type,
    } 
開發者ID:tiangolo,項目名稱:fastapi,代碼行數:10,代碼來源:tutorial001.py

示例12: process_pdf

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def process_pdf(file: UploadFile = File(None)):
    global sectlabel_model
    if sectlabel_model is None:
        sectlabel_model = SectLabel()

    file_handle = file.file
    file_name = file.filename
    file_contents = file_handle.read()

    pdf_save_location = pdf_store.save_pdf_binary_string(
        pdf_string=file_contents, out_filename=file_name
    )

    # noinspection PyTypeChecker
    pdf_reader = PdfReader(filepath=pdf_save_location)

    # read pdf lines
    lines = pdf_reader.read_pdf()
    all_labels = []
    all_lines = []

    for batch_lines in chunks(lines, 64):
        labels = sectlabel_model.predict_for_text_batch(texts=batch_lines)
        all_labels.append(labels)
        all_lines.append(batch_lines)

    all_lines = itertools.chain.from_iterable(all_lines)
    all_lines = list(all_lines)

    all_labels = itertools.chain.from_iterable(all_labels)
    all_labels = list(all_labels)

    response_tuples = []
    for line, label in zip(all_lines, all_labels):
        response_tuples.append((line, label))

    # remove the saved pdf
    pdf_store.delete_file(str(pdf_save_location))

    return {"labels": response_tuples} 
開發者ID:abhinavkashyap,項目名稱:sciwing,代碼行數:42,代碼來源:sectlabel.py

示例13: create_c2_profile

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def create_c2_profile(
    db: Session = Depends(get_db),
    name: str = Form(...),
    profile: UploadFile = File(...),
    remark: str = Form(None),
):
    c2_profile_obj = C2ProfileCreate(
        name=name,
        remark=remark,
        profile_name=profile.filename,
        profile_content=await profile.read()
    )
    created_data = crud_c2.create(db, obj_in=c2_profile_obj)
    return dict(result=created_data) 
開發者ID:QAX-A-Team,項目名稱:LuWu,代碼行數:16,代碼來源:config.py

示例14: upload_site_template_file

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def upload_site_template_file(
    db: Session = Depends(get_db),
    *,
    site_template_id: int,
    zip_file: UploadFile = File(..., alias='zipFile'),
):
    update_result = crud_site_template.update_site_template(
        db_session=db,
        template_id=site_template_id,
        zip_file_name=zip_file.filename,
        zip_file_content=await zip_file.read()
    )
    return dict(result=bool(update_result)) 
開發者ID:QAX-A-Team,項目名稱:LuWu,代碼行數:15,代碼來源:config.py

示例15: config_validator

# 需要導入模塊: import fastapi [as 別名]
# 或者: from fastapi import UploadFile [as 別名]
def config_validator(
    data: fastapi.UploadFile = fastapi.File(...),
):  # pragma: no cover
    try:
        rules.UserConfigurationSchema(await data.read())
    except Exception as e:
        status = 400
        message = str(e)
    else:
        status = 200
        message = "The configuration is valid"

    return responses.PlainTextResponse(message, status_code=status) 
開發者ID:Mergifyio,項目名稱:mergify-engine,代碼行數:15,代碼來源:web.py


注:本文中的fastapi.UploadFile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。