本文整理匯總了Python中fast_rcnn.nms_wrapper.nms方法的典型用法代碼示例。如果您正苦於以下問題:Python nms_wrapper.nms方法的具體用法?Python nms_wrapper.nms怎麽用?Python nms_wrapper.nms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fast_rcnn.nms_wrapper
的用法示例。
在下文中一共展示了nms_wrapper.nms方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_nms
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def apply_nms(all_boxes, thresh):
"""Apply non-maximum suppression to all predicted boxes output by the
test_net method.
"""
num_classes = len(all_boxes)
num_images = len(all_boxes[0])
nms_boxes = [[[] for _ in xrange(num_images)]
for _ in xrange(num_classes)]
for cls_ind in xrange(num_classes):
for im_ind in xrange(num_images):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# CPU NMS is much faster than GPU NMS when the number of boxes
# is relative small (e.g., < 10k)
# TODO(rbg): autotune NMS dispatch
keep = nms(dets, thresh, force_cpu=True)
if len(keep) == 0:
continue
nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
return nms_boxes
示例2: apply_nms
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def apply_nms(all_boxes, thresh):
"""Apply non-maximum suppression to all predicted boxes output by the
test_net method.
"""
num_classes = len(all_boxes)
num_images = len(all_boxes[0])
nms_boxes = [[[] for _ in xrange(num_images)]
for _ in xrange(num_classes)]
for cls_ind in xrange(num_classes):
for im_ind in xrange(num_images):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
keep = nms(dets, thresh)
if len(keep) == 0:
continue
nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
return nms_boxes
示例3: interpret_faster_rcnn
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def interpret_faster_rcnn(self, cls_prob, bbox_pred, rois, im_info, im_shape, nms=True, clip=True, min_score=0.0):
# find class
scores, inds = cls_prob.data.max(1)
scores, inds = scores.cpu().numpy(), inds.cpu().numpy()
keep = np.where((inds > 0) & (scores >= min_score))
scores, inds = scores[keep], inds[keep]
# Apply bounding-box regression deltas
keep = keep[0]
box_deltas = bbox_pred.data.cpu().numpy()[keep]
box_deltas = np.asarray([
box_deltas[i, (inds[i] * 4): (inds[i] * 4 + 4)] for i in range(len(inds))
], dtype=np.float)
boxes = rois.data.cpu().numpy()[keep, 1:5] / im_info[0][2]
pred_boxes = bbox_transform_inv(boxes, box_deltas)
if clip:
pred_boxes = clip_boxes(pred_boxes, im_shape)
# nms
if nms and pred_boxes.shape[0] > 0:
pred_boxes, scores, inds = nms_detections(pred_boxes, scores, 0.3, inds=inds)
return pred_boxes, scores, self.classes[inds]
示例4: demo
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def demo(net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# Visualize detections for each class
CONF_THRESH = 0.8
NMS_THRESH = 0.3
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(im, cls, dets, thresh=CONF_THRESH)
示例5: get_ohem_minibatch
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def get_ohem_minibatch(loss, rois, labels, bbox_targets=None,
bbox_inside_weights=None, bbox_outside_weights=None):
"""Given rois and their loss, construct a minibatch using OHEM."""
loss = np.array(loss)
if cfg.TRAIN.OHEM_USE_NMS:
# Do NMS using loss for de-dup and diversity
keep_inds = []
nms_thresh = cfg.TRAIN.OHEM_NMS_THRESH
source_img_ids = [roi[0] for roi in rois]
for img_id in np.unique(source_img_ids):
for label in np.unique(labels):
sel_indx = np.where(np.logical_and(labels == label, \
source_img_ids == img_id))[0]
if not len(sel_indx):
continue
boxes = np.concatenate((rois[sel_indx, 1:],
loss[sel_indx][:,np.newaxis]), axis=1).astype(np.float32)
keep_inds.extend(sel_indx[nms(boxes, nms_thresh)])
hard_keep_inds = select_hard_examples(loss[keep_inds])
hard_inds = np.array(keep_inds)[hard_keep_inds]
else:
hard_inds = select_hard_examples(loss)
blobs = {'rois_hard': rois[hard_inds, :].copy(),
'labels_hard': labels[hard_inds].copy()}
if bbox_targets is not None:
assert cfg.TRAIN.BBOX_REG
blobs['bbox_targets_hard'] = bbox_targets[hard_inds, :].copy()
blobs['bbox_inside_weights_hard'] = bbox_inside_weights[hard_inds, :].copy()
blobs['bbox_outside_weights_hard'] = bbox_outside_weights[hard_inds, :].copy()
return blobs
示例6: demo
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def demo(sess, net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
#im_file = os.path.join('/home/corgi/Lab/label/pos_frame/ACCV/training/000001/',image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(sess, net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# Visualize detections for each class
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
CONF_THRESH = 0.8
NMS_THRESH = 0.3
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(im, cls, dets, ax, thresh=CONF_THRESH)
示例7: demo
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def demo(net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# Visualize detections for each class
CONF_THRESH = 0.8
NMS_THRESH = 0.3
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4:8]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(im, cls, dets, thresh=CONF_THRESH)
示例8: nms_detections
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def nms_detections(pred_boxes, scores, nms_thresh, inds=None):
dets = np.hstack((pred_boxes,
scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, nms_thresh)
if inds is None:
return pred_boxes[keep], scores[keep]
return pred_boxes[keep], scores[keep], inds[keep]
示例9: execute
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def execute(self, data, batch_size):
ret = []
for i in range(batch_size):
img_array = np.asarray(bytearray(data[i].read()), dtype=np.uint8)
im = cv2.imdecode(img_array, -1)
scores, boxes = im_detect(self.net, im)
CONF_THRESH = 0.8
NMS_THRESH = 0.3
cand = []
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4:8]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
one = [cls, dets, CONF_THRESH]
cand.append(one)
rects = []
cas = []
for item in cand:
class_name = item[0]
dets = item[1]
thresh = item[2]
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
continue
for j in inds:
bbox = dets[j, :4]
score = dets[j, -1]
rect = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]
rects.append(rect)
cs = [class_name, score]
cas.append(cs)
ret_val=str(cas) + '\n' + str(rects) + "\n"
ret.append(ret_val)
return ret
示例10: get_detections_from_im
# 需要導入模塊: from fast_rcnn import nms_wrapper [as 別名]
# 或者: from fast_rcnn.nms_wrapper import nms [as 別名]
def get_detections_from_im(net, im_file, image_id, conf_thresh=0.2):
"""
:param net:
:param im_file: full path to an image
:param image_id:
:param conf_thresh:
:return: all information from detection and attr prediction
"""
im = cv2.imread(im_file)
scores, boxes, attr_scores, rel_scores = im_detect(net, im)
# Keep the original boxes, don't worry about the regresssion bbox outputs
rois = net.blobs['rois'].data.copy()
# unscale back to raw image space
blobs, im_scales = _get_blobs(im, None)
cls_boxes = rois[:, 1:5] / im_scales[0]
cls_prob = net.blobs['cls_prob'].data
attr_prob = net.blobs['attr_prob'].data
pool5 = net.blobs['pool5_flat'].data
# Keep only the best detections
max_conf = np.zeros((rois.shape[0]))
for cls_ind in range(1, cls_prob.shape[1]):
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32)
keep = np.array(nms(dets, cfg.TEST.NMS))
max_conf[keep] = np.where(cls_scores[keep] > max_conf[keep], cls_scores[keep], max_conf[keep])
keep_boxes = np.where(max_conf >= conf_thresh)[0]
if len(keep_boxes) < MIN_BOXES:
keep_boxes = np.argsort(max_conf)[::-1][:MIN_BOXES]
elif len(keep_boxes) > MAX_BOXES:
keep_boxes = np.argsort(max_conf)[::-1][:MAX_BOXES]
objects = np.argmax(cls_prob[keep_boxes][:, 1:], axis=1)
objects_conf = np.max(cls_prob[keep_boxes][:, 1:], axis=1)
attrs = np.argmax(attr_prob[keep_boxes][:, 1:], axis=1)
attrs_conf = np.max(attr_prob[keep_boxes][:, 1:], axis=1)
return {
"img_id": image_id,
"img_h": np.size(im, 0),
"img_w": np.size(im, 1),
"objects_id": base64.b64encode(objects), # int64
"objects_conf": base64.b64encode(objects_conf), # float32
"attrs_id": base64.b64encode(attrs), # int64
"attrs_conf": base64.b64encode(attrs_conf), # float32
"num_boxes": len(keep_boxes),
"boxes": base64.b64encode(cls_boxes[keep_boxes]), # float32
"features": base64.b64encode(pool5[keep_boxes]) # float32
}