本文整理匯總了Python中fast_rcnn.config.get_output_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python config.get_output_dir方法的具體用法?Python config.get_output_dir怎麽用?Python config.get_output_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fast_rcnn.config
的用法示例。
在下文中一共展示了config.get_output_dir方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_rpn_msr_net
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def test_rpn_msr_net(net, imdb):
output_dir = get_output_dir(imdb, net)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
det_file = os.path.join(output_dir, 'detections.pkl')
if os.path.exists(det_file):
with open(det_file, 'rb') as fid:
all_boxes = cPickle.load(fid)
print 'Detections loaded from {}'.format(det_file)
print 'Evaluating detections'
imdb.evaluate_proposals_msr(all_boxes, output_dir)
return
# Generate proposals on the imdb
all_boxes = imdb_proposals_det(net, imdb)
det_file = os.path.join(output_dir, 'detections.pkl')
with open(det_file, 'wb') as f:
cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)
print 'Evaluating detections'
imdb.evaluate_proposals_msr(all_boxes, output_dir)
示例2: test_net_VOC
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def test_net_VOC(net, imdb):
"""Test a Fast R-CNN network on an image database."""
num_images = len(imdb.image_index)
# heuristic: keep an average of 40 detections per class per images prior
# to NMS
output_dir = get_output_dir(imdb, net)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# timers
_t = {'im_cls' : Timer(), 'misc' : Timer()}
roidb = imdb.roidb
for i in xrange(num_images):
im = cv2.imread(imdb.image_path_at(i))
_t['im_cls'].tic()
scores = im_cls(net, im, roidb[i]['boxes'])
# scores = np.max(scores, axis=0)
scores = np.mean(scores, axis=0)
_t['im_cls'].toc()
_t['misc'].tic()
for j in xrange(imdb.num_classes):
cls_file = os.path.join(output_dir, 'comp2_cls_test_'+imdb.classes[j]+'.txt')
with open(cls_file, 'a') as f:
f.write(imdb.image_index[i]+' '+str(scores[j])+'\n')
_t['misc'].toc()
print 'im_cls: {:d}/{:d} {:.3f}s {:.3f}s' \
.format(i + 1, num_images, _t['im_cls'].average_time,
_t['misc'].average_time)
示例3: train_rpn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None):
"""Train a Region Proposal Network in a separate training process.
"""
# Not using any proposals, just ground-truth boxes
cfg.TRAIN.HAS_RPN = True
cfg.TRAIN.BBOX_REG = False # applies only to Fast R-CNN bbox regression
cfg.TRAIN.PROPOSAL_METHOD = 'gt'
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name)
print 'roidb len: {}'.format(len(roidb))
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
rpn_model_path = model_paths[-1]
# Send final model path through the multiprocessing queue
queue.put({'model_path': rpn_model_path})
示例4: rpn_generate
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def rpn_generate(queue=None, imdb_name=None, rpn_model_path=None, cfg=None,
rpn_test_prototxt=None):
"""Use a trained RPN to generate proposals.
"""
cfg.TEST.RPN_PRE_NMS_TOP_N = -1 # no pre NMS filtering
cfg.TEST.RPN_POST_NMS_TOP_N = 2000 # limit top boxes after NMS
print 'RPN model: {}'.format(rpn_model_path)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
# NOTE: the matlab implementation computes proposals on flipped images, too.
# We compute them on the image once and then flip the already computed
# proposals. This might cause a minor loss in mAP (less proposal jittering).
imdb = get_imdb(imdb_name)
print 'Loaded dataset `{:s}` for proposal generation'.format(imdb.name)
# Load RPN and configure output directory
rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST)
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
# Generate proposals on the imdb
rpn_proposals = imdb_proposals(rpn_net, imdb)
# Write proposals to disk and send the proposal file path through the
# multiprocessing queue
rpn_net_name = os.path.splitext(os.path.basename(rpn_model_path))[0]
rpn_proposals_path = os.path.join(
output_dir, rpn_net_name + '_proposals.pkl')
with open(rpn_proposals_path, 'wb') as f:
cPickle.dump(rpn_proposals, f, cPickle.HIGHEST_PROTOCOL)
print 'Wrote RPN proposals to {}'.format(rpn_proposals_path)
queue.put({'proposal_path': rpn_proposals_path})
示例5: train_fast_rcnn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_fast_rcnn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None, rpn_file=None):
"""Train a Fast R-CNN using proposals generated by an RPN.
"""
cfg.TRAIN.HAS_RPN = False # not generating prosals on-the-fly
cfg.TRAIN.PROPOSAL_METHOD = 'rpn' # use pre-computed RPN proposals instead
cfg.TRAIN.IMS_PER_BATCH = 2
print 'Init model: {}'.format(init_model)
print 'RPN proposals: {}'.format(rpn_file)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name, rpn_file=rpn_file)
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
# Train Fast R-CNN
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
fast_rcnn_model_path = model_paths[-1]
# Send Fast R-CNN model path over the multiprocessing queue
queue.put({'model_path': fast_rcnn_model_path})
示例6: train_rpn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None, output_cache=None):
"""Train a Region Proposal Network in a separate training process.
"""
# Not using any proposals, just ground-truth boxes
cfg.TRAIN.HAS_RPN = True
cfg.TRAIN.BBOX_REG = False # applies only to R-FCN bbox regression
cfg.TRAIN.PROPOSAL_METHOD = 'gt'
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name)
print 'roidb len: {}'.format(len(roidb))
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
final_caffemodel = os.path.join(output_dir, output_cache)
if os.path.exists(final_caffemodel):
queue.put({'model_path': final_caffemodel})
else:
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
rpn_model_path = model_paths[-1]
# Send final model path through the multiprocessing queue
shutil.copyfile(rpn_model_path, final_caffemodel)
queue.put({'model_path': final_caffemodel})
示例7: rpn_generate
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def rpn_generate(queue=None, imdb_name=None, rpn_model_path=None, cfg=None,
rpn_test_prototxt=None):
"""Use a trained RPN to generate proposals.
"""
cfg.TEST.RPN_PRE_NMS_TOP_N = 6000 # no pre NMS filtering
cfg.TEST.RPN_POST_NMS_TOP_N = 300 # limit top boxes after NMS
print 'RPN model: {}'.format(rpn_model_path)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
# NOTE: the matlab implementation computes proposals on flipped images, too.
# We compute them on the image once and then flip the already computed
# proposals. This might cause a minor loss in mAP (less proposal jittering).
imdb = get_imdb(imdb_name)
print 'Loaded dataset `{:s}` for proposal generation'.format(imdb.name)
# Load RPN and configure output directory
rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST)
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
rpn_net_name = os.path.splitext(os.path.basename(rpn_model_path))[0]
rpn_proposals_path = os.path.join(
output_dir, rpn_net_name + '_proposals.pkl')
# Generate proposals on the imdb
# Write proposals to disk and send the proposal file path through the
# multiprocessing queue
if not os.path.exists(rpn_proposals_path):
rpn_proposals = imdb_proposals(rpn_net, imdb)
with open(rpn_proposals_path, 'wb') as f:
cPickle.dump(rpn_proposals, f, cPickle.HIGHEST_PROTOCOL)
queue.put({'proposal_path': rpn_proposals_path})
print 'Wrote RPN proposals to {}'.format(rpn_proposals_path)
示例8: train_rfcn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_rfcn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None, rpn_file=None, output_cache=None):
"""Train a R-FCN using proposals generated by an RPN.
"""
cfg.TRAIN.HAS_RPN = False # not generating prosals on-the-fly
cfg.TRAIN.PROPOSAL_METHOD = 'rpn' # use pre-computed RPN proposals instead
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print 'RPN proposals: {}'.format(rpn_file)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name, rpn_file=rpn_file)
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
# Train R-FCN
# Send R-FCN model path over the multiprocessing queue
final_caffemodel = os.path.join(output_dir, output_cache)
if os.path.exists(final_caffemodel):
queue.put({'model_path': final_caffemodel})
else:
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
rfcn_model_path = model_paths[-1]
# Send final model path through the multiprocessing queue
shutil.copyfile(rfcn_model_path, final_caffemodel)
queue.put({'model_path': final_caffemodel})
示例9: train_rpn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None, output_dir=None):
"""Train a Region Proposal Network in a separate training process.
"""
# Not using any proposals, just ground-truth boxes
cfg.TRAIN.HAS_RPN = True
cfg.TRAIN.BBOX_REG = False # applies only to Fast R-CNN bbox regression
cfg.TRAIN.PROPOSAL_METHOD = 'gt'
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name)
# print 'first image: ',imdb.gt_roidb()
# print 'roidb len: {}'.format(len(roidb))
if output_dir==None:
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
print 'len roidb=',len(roidb)
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
rpn_model_path = model_paths[-1]
# Send final model path through the multiprocessing queue
queue.put({'model_path': rpn_model_path})
示例10: rpn_generate
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def rpn_generate(queue=None, imdb_name=None, rpn_model_path=None, cfg=None,
rpn_test_prototxt=None, output_dir=None, part_id=None):
"""Use a trained RPN to generate proposals.
"""
cfg.TEST.RPN_PRE_NMS_TOP_N = -1 # no pre NMS filtering
cfg.TEST.RPN_POST_NMS_TOP_N = 2000 # limit top boxes after NMS
print 'RPN model: {}'.format(rpn_model_path)
print('Using config:')
pp = pprint.PrettyPrinter(depth=6)
pp.pprint(cfg)
import caffe
_init_caffe(cfg)
# NOTE: the matlab implementation computes proposals on flipped images, too.
# We compute them on the image once and then flip the already computed
# proposals. This might cause a minor loss in mAP (less proposal jittering).
imdb = get_imdb(imdb_name)
print 'Loaded dataset `{:s}` for proposal generation'.format(imdb.name)
# Load RPN and configure output directory
rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST)
if output_dir==None:
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
# Generate proposals on the imdb
rpn_proposals = imdb_proposals(rpn_net, imdb)
# Write proposals to disk and send the proposal file path through the
# multiprocessing queue
rpn_net_name = os.path.splitext(os.path.basename(rpn_model_path))[0]
rpn_proposals_path = os.path.join(
output_dir, rpn_net_name + ('_'+part_id if part_id != None else '')+'_proposals.pkl')
with open(rpn_proposals_path, 'wb') as f:
cPickle.dump(rpn_proposals, f, cPickle.HIGHEST_PROTOCOL)
print 'Wrote RPN proposals to {}'.format(rpn_proposals_path)
queue.put({'proposal_path': rpn_proposals_path, 'rpn_net': rpn_net_name})
示例11: train_fast_rcnn
# 需要導入模塊: from fast_rcnn import config [as 別名]
# 或者: from fast_rcnn.config import get_output_dir [as 別名]
def train_fast_rcnn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None, rpn_file=None, output_dir=None):
"""Train a Fast R-CNN using proposals generated by an RPN.
"""
cfg.TRAIN.HAS_RPN = False # not generating prosals on-the-fly
cfg.TRAIN.PROPOSAL_METHOD = 'rpn' # use pre-computed RPN proposals instead
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print 'RPN proposals: {}'.format(rpn_file)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name, rpn_file=rpn_file)
if output_dir==None:
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
# Train Fast R-CNN
model_paths = train_net(solver, roidb, output_dir,
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
fast_rcnn_model_path = model_paths[-1]
# Send Fast R-CNN model path over the multiprocessing queue
if queue != None:
queue.put({'model_path': fast_rcnn_model_path})