當前位置: 首頁>>代碼示例>>Python>>正文


Python bbox_transform.clip_boxes方法代碼示例

本文整理匯總了Python中fast_rcnn.bbox_transform.clip_boxes方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.clip_boxes方法的具體用法?Python bbox_transform.clip_boxes怎麽用?Python bbox_transform.clip_boxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fast_rcnn.bbox_transform的用法示例。


在下文中一共展示了bbox_transform.clip_boxes方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: interpret_faster_rcnn

# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import clip_boxes [as 別名]
def interpret_faster_rcnn(self, cls_prob, bbox_pred, rois, im_info, im_shape, nms=True, clip=True, min_score=0.0):
        # find class
        scores, inds = cls_prob.data.max(1)
        scores, inds = scores.cpu().numpy(), inds.cpu().numpy()

        keep = np.where((inds > 0) & (scores >= min_score))
        scores, inds = scores[keep], inds[keep]

        # Apply bounding-box regression deltas
        keep = keep[0]
        box_deltas = bbox_pred.data.cpu().numpy()[keep]
        box_deltas = np.asarray([
            box_deltas[i, (inds[i] * 4): (inds[i] * 4 + 4)] for i in range(len(inds))
        ], dtype=np.float)
        boxes = rois.data.cpu().numpy()[keep, 1:5] / im_info[0][2]
        pred_boxes = bbox_transform_inv(boxes, box_deltas)
        if clip:
            pred_boxes = clip_boxes(pred_boxes, im_shape)

        # nms
        if nms and pred_boxes.shape[0] > 0:
            pred_boxes, scores, inds = nms_detections(pred_boxes, scores, 0.3, inds=inds)

        return pred_boxes, scores, self.classes[inds] 
開發者ID:longcw,項目名稱:faster_rcnn_pytorch,代碼行數:26,代碼來源:faster_rcnn.py

示例2: im_detect

# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import clip_boxes [as 別名]
def im_detect(sess, net, inputs, im, boxes, bbox_reg, multi_iter):
    blobs, im_scales = _get_blobs(im, boxes)

    relations = []
    for i in range(boxes.shape[0]):
        for j in range(boxes.shape[0]):
            if i != j:
                relations.append([i, j])
    relations = np.array(relations, dtype=np.int32) # all possible combinations
    num_roi = blobs['rois'].shape[0]
    num_rel = relations.shape[0]

    inputs_feed = data_utils.create_graph_data(num_roi, num_rel, relations)

    feed_dict = {inputs['ims']: blobs['data'],
                 inputs['rois']: blobs['rois'],
                 inputs['relations']: relations,
                 net.keep_prob: 1}

    for k in inputs_feed:
        feed_dict[inputs[k]] = inputs_feed[k]

    # compute relation rois
    feed_dict[inputs['rel_rois']] = \
        data_utils.compute_rel_rois(num_rel, blobs['rois'], relations)

    ops = {}

    ops['bbox_deltas'] = net.bbox_pred_output(multi_iter)
    ops['rel_probs'] = net.rel_pred_output(multi_iter)
    ops['cls_probs'] = net.cls_pred_output(multi_iter)

    ops_value = sess.run(ops, feed_dict=feed_dict)

    out_dict = {}
    for mi in multi_iter:
        rel_probs = None
        rel_probs_flat = ops_value['rel_probs'][mi]
        rel_probs = np.zeros([num_roi, num_roi, rel_probs_flat.shape[1]])
        for i, rel in enumerate(relations):
            rel_probs[rel[0], rel[1], :] = rel_probs_flat[i, :]

        cls_probs = ops_value['cls_probs'][mi]

        if bbox_reg:
            # Apply bounding-box regression deltas
            pred_boxes = bbox_transform_inv(boxes, ops_value['bbox_deltas'][mi])
            pred_boxes = clip_boxes(pred_boxes, im.shape)
        else:
            # Simply repeat the boxes, once for each class
            pred_boxes = np.tile(boxes, (1, cls_probs.shape[1]))

        out_dict[mi] = {'scores': cls_probs.copy(),
                        'boxes': pred_boxes.copy(),
                        'relations': rel_probs.copy()}
    return out_dict 
開發者ID:danfeiX,項目名稱:scene-graph-TF-release,代碼行數:58,代碼來源:test.py

示例3: forward

# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import clip_boxes [as 別名]
def forward(self, bottom, top):


        #assert bottom[0].data.shape[0] == 1, \
        #    'Only single item batches are supported'


        # the first set of _num_anchors channels are bg probs
        # the second set are the fg probs, which we want
        rpn_boxes_Actual = bottom[0].data
        box_deltas = bottom[1].data
	im_info = bottom[2].data
	scores = bottom[3].data


	#print('im_info : ', im_info)

	im_scales = im_info[0][2]

	im_shape = np.array([im_info[0][0], im_info[0][1]]) / im_scales
	#print('conv_feat : ', conv_feat.shape)
	#print('rpnBoxes : ', rpn_boxes.shape)
	

	#for idx in range(len(cls_idx)):
		#cls_boxes = final_boxes[inds, j*4:(j+1)*4]


	rpn_boxes = rpn_boxes_Actual[:, 1:5] / im_scales
	pred_boxes = bbox_transform_inv(rpn_boxes, box_deltas)
        pred_boxes = clip_boxes(pred_boxes, im_shape)

	cls_idx = np.argmax(scores, axis = 1)

	#print('cls_idx', cls_idx.shape, cls_idx )

	#cls_idx = cls_idx.reshape(len(cls_idx), 1)
	#print('cls_idx', cls_idx.shape)
	#pred_boxes = pred_boxes[:, cls_idx*4:(cls_idx+1)*4]
	temp = np.zeros((len(cls_idx), 5))

	for idx in range(len(cls_idx)):
		#print(cls_idx[idx])
		temp[idx,1:] = pred_boxes[idx, cls_idx[idx]*4:(cls_idx[idx]+1)*4]

	
	pred_boxes = temp * im_scales
	#addd = cls_idx >0
	#print('Compare :', rpn_boxes[cls_idx>0,:], temp[cls_idx>0,:])

	#rpn_boxes_Actual[:,1:5] = pred_boxes

	top[0].reshape(*(pred_boxes.shape))
        top[0].data[...] = pred_boxes 
開發者ID:makhtar17004,項目名稱:orientation-aware-firearm-detection,代碼行數:56,代碼來源:makebboxproposals.py


注:本文中的fast_rcnn.bbox_transform.clip_boxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。