本文整理匯總了Python中fast_rcnn.bbox_transform.bbox_transform_inv方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.bbox_transform_inv方法的具體用法?Python bbox_transform.bbox_transform_inv怎麽用?Python bbox_transform.bbox_transform_inv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fast_rcnn.bbox_transform
的用法示例。
在下文中一共展示了bbox_transform.bbox_transform_inv方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _propagate_boxes
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def _propagate_boxes(boxes, annot_proto, frame_id):
pred_boxes = []
annots = []
for annot in annot_proto['annotations']:
for idx, box in enumerate(annot['track']):
if box['frame'] == frame_id and len(annot['track']) > idx + 1:
gt1 = box['bbox']
gt2 = annot['track'][idx+1]['bbox']
delta = bbox_transform(np.asarray([gt1]), np.asarray([gt2]))
annots.append((gt1, delta))
gt1 = [annot[0] for annot in annots]
overlaps = bbox_overlaps(np.require(boxes, dtype=np.float),
np.require(gt1, dtype=np.float))
assert len(overlaps) == len(boxes)
for gt_overlaps, box in zip(overlaps, boxes):
max_overlap = np.max(gt_overlaps)
max_gt = np.argmax(gt_overlaps)
if max_overlap < 0.5:
pred_boxes.append(box)
else:
delta = annots[max_gt][1]
pred_boxes.append(bbox_transform_inv(np.asarray([box]), delta)[0].tolist())
return pred_boxes
示例2: interpret_faster_rcnn
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def interpret_faster_rcnn(self, cls_prob, bbox_pred, rois, im_info, im_shape, nms=True, clip=True, min_score=0.0):
# find class
scores, inds = cls_prob.data.max(1)
scores, inds = scores.cpu().numpy(), inds.cpu().numpy()
keep = np.where((inds > 0) & (scores >= min_score))
scores, inds = scores[keep], inds[keep]
# Apply bounding-box regression deltas
keep = keep[0]
box_deltas = bbox_pred.data.cpu().numpy()[keep]
box_deltas = np.asarray([
box_deltas[i, (inds[i] * 4): (inds[i] * 4 + 4)] for i in range(len(inds))
], dtype=np.float)
boxes = rois.data.cpu().numpy()[keep, 1:5] / im_info[0][2]
pred_boxes = bbox_transform_inv(boxes, box_deltas)
if clip:
pred_boxes = clip_boxes(pred_boxes, im_shape)
# nms
if nms and pred_boxes.shape[0] > 0:
pred_boxes, scores, inds = nms_detections(pred_boxes, scores, 0.3, inds=inds)
return pred_boxes, scores, self.classes[inds]
示例3: tpn_test
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def tpn_test(vid_proto, box_proto, net, rnn_net, session, det_fun=im_detect, scheme='max', length=None,
sample_rate=1, offset=0, cls_indices=None, batch_size=64):
# same as roi_propagation except keep_feat is always True
track_proto = roi_propagation(vid_proto, box_proto, net, det_fun=det_fun,
scheme=scheme, length=length, sample_rate=sample_rate,
offset=offset, cls_indices=cls_indices, batch_size=batch_size,
keep_feat=True)
print 'Running LSTM...'
for track in track_proto['tracks']:
feat = np.asarray([box['feature'] for box in track])
track_length = len(track)
expend_feat = np.zeros((rnn_net.num_steps,) + feat.shape[1:])
expend_feat[:track_length] = feat
# extract features
state = session.run([rnn_net.initial_state])
cls_scores, bbox_deltas, end_probs, state = session.run(
[rnn_net.cls_scores, rnn_net.bbox_pred, rnn_net.end_probs,
rnn_net.final_state],
{rnn_net.input_data: expend_feat[np.newaxis,:,:],
rnn_net.initial_state: state[0]})
# process outputs
rois = np.asarray([box['roi'] for box in track])
bbox_pred = bbox_transform_inv(rois, bbox_deltas[:track_length,:])
cls_pred_lstm = cls_scores[:track_length]
end_probs = end_probs[:track_length]
for box, cur_bbox_pred, cur_cls_pred_lstm, cur_end_prob in \
zip(track, bbox_pred, cls_pred_lstm, end_probs):
box['scores_lstm'] = cur_cls_pred_lstm.tolist()
box['bbox_lstm'] = cur_bbox_pred.tolist()
box['end_prob'] = float(cur_end_prob)
del box['feature']
return track_proto
示例4: _gt_propagate_boxes
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def _gt_propagate_boxes(boxes, annot_proto, frame_id, window, overlap_thres):
pred_boxes = []
annots = []
for annot in annot_proto['annotations']:
for idx, box in enumerate(annot['track']):
if box['frame'] == frame_id:
gt1 = box['bbox']
deltas = []
deltas.append(gt1)
for offset in xrange(1, window):
try:
gt2 = annot['track'][idx+offset]['bbox']
except IndexError:
gt2 = gt1
delta = bbox_transform(np.asarray([gt1]), np.asarray([gt2]))
deltas.append(delta)
annots.append(deltas)
gt1s = [annot[0] for annot in annots]
if not gt1s:
# no grount-truth, boxes remain still
return np.tile(np.asarray(boxes)[:,np.newaxis,:], [1,window-1,1])
overlaps = bbox_overlaps(np.require(boxes, dtype=np.float),
np.require(gt1s, dtype=np.float))
assert len(overlaps) == len(boxes)
for gt_overlaps, box in zip(overlaps, boxes):
max_overlap = np.max(gt_overlaps)
max_gt = np.argmax(gt_overlaps)
sequence_box = []
if max_overlap < overlap_thres:
for offset in xrange(1, window):
sequence_box.append(box)
else:
for offset in xrange(1, window):
delta = annots[max_gt][offset]
sequence_box.append(
bbox_transform_inv(np.asarray([box]), delta)[0].tolist())
pred_boxes.append((sequence_box))
return np.asarray(pred_boxes)
示例5: _accuracy
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def _accuracy(track, gt):
if len(track) < 2:
return [], [], []
abs_acc = []
rel_acc = []
ious = []
st_frame = track[0]['frame']
end_frame = track[-1]['frame']
assert end_frame - st_frame + 1 == len(track)
gt_seg = select_gt_segment(gt['track'], st_frame, end_frame)
assert len(gt_seg) <= len(track)
track_bbox1 = np.asarray([track[0]['bbox']])
gt_bbox1 = np.asarray([gt_seg[0]])
for track_box, gt_bbox in zip(track[1:len(gt_seg)], gt_seg[1:]):
# current track box
track_bbox = np.asarray([track_box['bbox']])
# gt motion
gt_delta = bbox_transform(gt_bbox1, np.asarray([gt_bbox]))
# target is the first track_bbox with gt motion
track_bbox_target = bbox_transform_inv(track_bbox1, gt_delta)
abs_diff = np.abs(track_bbox - track_bbox_target)
cur_iou = iou(track_bbox, track_bbox_target)
width = track_bbox_target[0,2] - track_bbox_target[0,0]
height = track_bbox_target[0,3] - track_bbox_target[0,1]
rel_diff = abs_diff / (np.asarray([width, height, width, height]) + np.finfo(float).eps)
abs_acc.extend(abs_diff.flatten().tolist())
rel_acc.extend(rel_diff.flatten().tolist())
ious.extend(cur_iou.flatten().tolist())
return abs_acc, rel_acc, ious
示例6: im_detect
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def im_detect(sess, net, inputs, im, boxes, bbox_reg, multi_iter):
blobs, im_scales = _get_blobs(im, boxes)
relations = []
for i in range(boxes.shape[0]):
for j in range(boxes.shape[0]):
if i != j:
relations.append([i, j])
relations = np.array(relations, dtype=np.int32) # all possible combinations
num_roi = blobs['rois'].shape[0]
num_rel = relations.shape[0]
inputs_feed = data_utils.create_graph_data(num_roi, num_rel, relations)
feed_dict = {inputs['ims']: blobs['data'],
inputs['rois']: blobs['rois'],
inputs['relations']: relations,
net.keep_prob: 1}
for k in inputs_feed:
feed_dict[inputs[k]] = inputs_feed[k]
# compute relation rois
feed_dict[inputs['rel_rois']] = \
data_utils.compute_rel_rois(num_rel, blobs['rois'], relations)
ops = {}
ops['bbox_deltas'] = net.bbox_pred_output(multi_iter)
ops['rel_probs'] = net.rel_pred_output(multi_iter)
ops['cls_probs'] = net.cls_pred_output(multi_iter)
ops_value = sess.run(ops, feed_dict=feed_dict)
out_dict = {}
for mi in multi_iter:
rel_probs = None
rel_probs_flat = ops_value['rel_probs'][mi]
rel_probs = np.zeros([num_roi, num_roi, rel_probs_flat.shape[1]])
for i, rel in enumerate(relations):
rel_probs[rel[0], rel[1], :] = rel_probs_flat[i, :]
cls_probs = ops_value['cls_probs'][mi]
if bbox_reg:
# Apply bounding-box regression deltas
pred_boxes = bbox_transform_inv(boxes, ops_value['bbox_deltas'][mi])
pred_boxes = clip_boxes(pred_boxes, im.shape)
else:
# Simply repeat the boxes, once for each class
pred_boxes = np.tile(boxes, (1, cls_probs.shape[1]))
out_dict[mi] = {'scores': cls_probs.copy(),
'boxes': pred_boxes.copy(),
'relations': rel_probs.copy()}
return out_dict
示例7: tpn_caffe_test
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def tpn_caffe_test(vid_proto, box_proto, net, rnn_net, det_fun=im_detect,
scheme='weighted', length=None,
sample_rate=1, offset=0, cls_indices=None, batch_size=64):
# same as roi_propagation except keep_feat is always True
track_proto = roi_propagation(vid_proto, box_proto, net, det_fun=det_fun,
scheme=scheme, length=length, sample_rate=sample_rate,
offset=offset, cls_indices=cls_indices, batch_size=batch_size,
keep_feat=True)
print 'Running LSTM...'
cont = np.ones((length,1))
cont[0,:] = 0
rnn_net.blobs['cont'].reshape(*cont.shape)
rnn_net.blobs['cont'].data[...] = cont
for track_idx, track in enumerate(track_proto['tracks'], start=1):
feat = np.asarray([box['feature'] for box in track])
track_length = len(track)
expend_feat = np.zeros((length, 1) + feat.shape[1:])
expend_feat[:track_length,0] = feat
# extract features
rnn_net.blobs['data'].reshape(*expend_feat.shape)
rnn_net.blobs['data'].data[...] = expend_feat
blobs_out = rnn_net.forward()
bbox_deltas = blobs_out['bbox_pred']
cls_scores = blobs_out['cls_prob']
if 'end_prob' in blobs_out:
end_probs = blobs_out['end_prob']
else:
end_probs = np.zeros((length,1))
# process outputs
rois = np.asarray([box['roi'] for box in track])
bbox_pred = bbox_transform_inv(rois, bbox_deltas[:track_length,0,:])
cls_pred_lstm = cls_scores[:track_length]
end_probs = end_probs[:track_length]
for box, cur_bbox_pred, cur_cls_pred_lstm, cur_end_prob in \
zip(track, bbox_pred, cls_pred_lstm, end_probs):
box['scores_lstm'] = cur_cls_pred_lstm.flatten().tolist()
box['bbox_lstm'] = cur_bbox_pred.tolist()
box['end_prob'] = float(cur_end_prob)
del box['feature']
if track_idx % 500 == 0:
print "{} tracks processed.".format(track_idx)
if track_idx % 500 != 0:
print "{} tracks processed.".format(track_idx)
return track_proto
示例8: forward
# 需要導入模塊: from fast_rcnn import bbox_transform [as 別名]
# 或者: from fast_rcnn.bbox_transform import bbox_transform_inv [as 別名]
def forward(self, bottom, top):
#assert bottom[0].data.shape[0] == 1, \
# 'Only single item batches are supported'
# the first set of _num_anchors channels are bg probs
# the second set are the fg probs, which we want
rpn_boxes_Actual = bottom[0].data
box_deltas = bottom[1].data
im_info = bottom[2].data
scores = bottom[3].data
#print('im_info : ', im_info)
im_scales = im_info[0][2]
im_shape = np.array([im_info[0][0], im_info[0][1]]) / im_scales
#print('conv_feat : ', conv_feat.shape)
#print('rpnBoxes : ', rpn_boxes.shape)
#for idx in range(len(cls_idx)):
#cls_boxes = final_boxes[inds, j*4:(j+1)*4]
rpn_boxes = rpn_boxes_Actual[:, 1:5] / im_scales
pred_boxes = bbox_transform_inv(rpn_boxes, box_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape)
cls_idx = np.argmax(scores, axis = 1)
#print('cls_idx', cls_idx.shape, cls_idx )
#cls_idx = cls_idx.reshape(len(cls_idx), 1)
#print('cls_idx', cls_idx.shape)
#pred_boxes = pred_boxes[:, cls_idx*4:(cls_idx+1)*4]
temp = np.zeros((len(cls_idx), 5))
for idx in range(len(cls_idx)):
#print(cls_idx[idx])
temp[idx,1:] = pred_boxes[idx, cls_idx[idx]*4:(cls_idx[idx]+1)*4]
pred_boxes = temp * im_scales
#addd = cls_idx >0
#print('Compare :', rpn_boxes[cls_idx>0,:], temp[cls_idx>0,:])
#rpn_boxes_Actual[:,1:5] = pred_boxes
top[0].reshape(*(pred_boxes.shape))
top[0].data[...] = pred_boxes