本文整理匯總了Python中fastText.load_model方法的典型用法代碼示例。如果您正苦於以下問題:Python fastText.load_model方法的具體用法?Python fastText.load_model怎麽用?Python fastText.load_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fastText
的用法示例。
在下文中一共展示了fastText.load_model方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def __init__(self, path=data_path):
self._clf = [
fastText.load_model(os.path.join(path, 'clf0.bin')),
fastText.load_model(os.path.join(path, 'clf1.bin')),
fastText.load_model(os.path.join(path, 'clf2.bin')),
]
self._zh_chars = re.compile(r'[^\u4e00-\u9fff]+')
self._id2name = dict()
with open(os.path.join(data_path, 'nsfc_subject.csv'), encoding='utf-8') as f:
for line in f:
_id, _name = line[:-1].split(',') # encode csv
self._id2name[_id] = _name
示例2: __init__
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def __init__(self):
self._model = fastText.load_model(os.path.join(data_path, 'model_aminer'))
self._words = self._model.get_labels()
self._index_mat = joblib.load(os.path.join(data_path, 'index_mat.pkl'))
self._id2person = json.load(open(os.path.join(data_path, 'pid_list.json'), encoding='utf-8'))
self.ac = ACAutomaton(self._words)
self.base_url = 'http://www.aminer.cn/profile/{}'
示例3: load_fasttext_model
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def load_fasttext_model(path):
"""
Load a binarized fastText model.
"""
try:
import fastText
except ImportError:
raise Exception("Unable to import fastText. Please install fastText for Python: "
"https://github.com/facebookresearch/fastText")
return fastText.load_model(path)
示例4: make_embeddings_simple_in_memory
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def make_embeddings_simple_in_memory(self, name="fasttext-crawl"):
nbWords = 0
print('loading embeddings...')
begin = True
description = self._get_description(name)
if description is not None:
embeddings_path = description["path"]
embeddings_type = description["type"]
self.lang = description["lang"]
print("path:", embeddings_path)
if self.extension == 'bin':
self.model = fastText.load_model(embeddings_path)
nbWords = len(self.model.get_words())
self.embed_size = self.model.get_dimension()
else:
with open(embeddings_path, encoding='utf8') as f:
for line in f:
line = line.strip()
line = line.split(' ')
if begin:
begin = False
nb_words, embed_size = fetch_header_if_available(line)
# we parse the header
if nb_words > 0 and embed_size > 0:
nbWords = nb_words
self.embed_size = embed_size
continue
word = line[0]
#if embeddings_type == 'glove':
vector = np.array([float(val) for val in line[1:len(line)]], dtype='float32')
#else:
# vector = np.array([float(val) for val in line[1:len(line)-1]], dtype='float32')
if self.embed_size == 0:
self.embed_size = len(vector)
self.model[word] = vector
if nbWords == 0:
nbWords = len(self.model)
print('embeddings loaded for', nbWords, "words and", self.embed_size, "dimensions")
示例5: before_request
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def before_request():
g.ft_model = fastText.load_model(app.config["FT_SERVER_MODEL_PATH"])
示例6: load
# 需要導入模塊: import fastText [as 別名]
# 或者: from fastText import load_model [as 別名]
def load(self, embedding_fname, embedding_url=None, *args, **kwargs):
"""
Method initializes dict of embeddings from file
Args:
fname: file name
Returns:
Nothing
"""
if not embedding_fname:
raise RuntimeError('Please, provide path to model')
fasttext_model_file = embedding_fname
if not Path(fasttext_model_file).is_file():
emb_path = embedding_url
if not emb_path:
raise RuntimeError('Fasttext model file does not exist locally. URL does not contain fasttext model file')
embedding_fname = Path(fasttext_model_file).name
try:
download(dest_file_path=fasttext_model_file, source_url=embedding_url)
except Exception as e:
raise RuntimeError('Looks like the `EMBEDDINGS_URL` variable is set incorrectly', e)
if self.module == "fastText":
import fastText
self.fasttext_model = fastText.load_model(fasttext_model_file)
if self.module == "fasttext":
import fasttext
self.fasttext_model = fasttext.load_model(fasttext_model_file)
return