本文整理匯總了Python中faiss.index_cpu_to_gpu方法的典型用法代碼示例。如果您正苦於以下問題:Python faiss.index_cpu_to_gpu方法的具體用法?Python faiss.index_cpu_to_gpu怎麽用?Python faiss.index_cpu_to_gpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類faiss
的用法示例。
在下文中一共展示了faiss.index_cpu_to_gpu方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_approximate_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def _build_approximate_index(self,
data: np.ndarray):
dimensionality = data.shape[1]
nlist = 100 if data.shape[0] > 100 else 2
if self.kernel_name in {'rbf'}:
quantizer = faiss.IndexFlatL2(dimensionality)
cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist, faiss.METRIC_L2)
else:
quantizer = faiss.IndexFlatIP(dimensionality)
cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist)
gpu_index_ivf = faiss.index_cpu_to_gpu(self.resource, 0, cpu_index_flat)
gpu_index_ivf.train(data)
gpu_index_ivf.add(data)
self.index = gpu_index_ivf
示例2: train_coarse_quantizer
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def train_coarse_quantizer(data, quantizer_path, num_clusters, hnsw=False, niter=10, cuda=False):
d = data.shape[1]
index_flat = faiss.IndexFlatL2(d)
# make it into a gpu index
if cuda:
res = faiss.StandardGpuResources()
index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
clus = faiss.Clustering(d, num_clusters)
clus.verbose = True
clus.niter = niter
clus.train(data, index_flat)
centroids = faiss.vector_float_to_array(clus.centroids)
centroids = centroids.reshape(num_clusters, d)
if hnsw:
quantizer = faiss.IndexHNSWFlat(d, 32)
quantizer.hnsw.efSearch = 128
quantizer.train(centroids)
quantizer.add(centroids)
else:
quantizer = faiss.IndexFlatL2(d)
quantizer.add(centroids)
faiss.write_index(quantizer, quantizer_path)
示例3: train_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def train_index(data, quantizer_path, trained_index_path, fine_quant='SQ8', cuda=False):
quantizer = faiss.read_index(quantizer_path)
if fine_quant == 'SQ8':
trained_index = faiss.IndexIVFScalarQuantizer(quantizer, quantizer.d, quantizer.ntotal, faiss.METRIC_L2)
elif fine_quant.startswith('PQ'):
m = int(fine_quant[2:])
trained_index = faiss.IndexIVFPQ(quantizer, quantizer.d, quantizer.ntotal, m, 8)
else:
raise ValueError(fine_quant)
if cuda:
if fine_quant.startswith('PQ'):
print('PQ not supported on GPU; keeping CPU.')
else:
res = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(res, 0, trained_index)
gpu_index.train(data)
trained_index = faiss.index_gpu_to_cpu(gpu_index)
else:
trained_index.train(data)
faiss.write_index(trained_index, trained_index_path)
示例4: _index_to_gpu
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def _index_to_gpu(index, device_id): # pragma: no cover
res = faiss.StandardGpuResources()
return faiss.index_cpu_to_gpu(res, device_id, index)
示例5: build_nn_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def build_nn_index(self, database):
'''
:param database: numpy array of Nx3
:return: Faiss index, in CPU
'''
# index = faiss.GpuIndexFlatL2(self.res, self.dimension, self.flat_config) # dimension is 3
index_cpu = faiss.IndexFlatL2(self.dimension)
index = faiss.index_cpu_to_gpu(self.res, self.opt.gpu_id, index_cpu)
index.add(database)
return index
示例6: _build_exact_index
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def _build_exact_index(self,
data: np.ndarray):
dimensionality = data.shape[1]
if self.kernel_name in {'rbf'}:
self.cpu_index_flat = faiss.IndexFlatL2(dimensionality)
else:
self.cpu_index_flat = faiss.IndexFlatIP(dimensionality)
if not self.cpu:
self.index = faiss.index_cpu_to_gpu(self.resource, 0, self.cpu_index_flat)
else:
self.index = self.cpu_index_flat
self.index.add(data)
示例7: fit
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def fit(self, X):
X = X.astype(numpy.float32)
self._index = faiss.GpuIndexIVFFlat(self._res, len(X[0]), self._n_bits,
faiss.METRIC_L2)
# self._index = faiss.index_factory(len(X[0]),
# "IVF%d,Flat" % self._n_bits)
# co = faiss.GpuClonerOptions()
# co.useFloat16 = True
# self._index = faiss.index_cpu_to_gpu(self._res, 0,
# self._index, co)
self._index.train(X)
self._index.add(X)
self._index.setNumProbes(self._n_probes)
示例8: load
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def load(self, path: str, device: Optional[str] = None) -> None:
r"""Load the index and meta data from ``path`` directory.
Args:
path (str): A path to the directory to load the index from.
device (optional str): Device to load the index into. If None,
value will be picked from hyperparameters.
"""
if not os.path.exists(path):
raise ValueError(f"Failed to load the index. {path} "
f"does not exist.")
cpu_index = faiss.read_index(f"{path}/index.faiss")
if device is None:
device = self._config.device
if device.lower().startswith("gpu"):
gpu_resource = faiss.StandardGpuResources()
gpu_id = int(device[3:])
if faiss.get_num_gpus() < gpu_id:
gpu_id = 0
logging.warning("Cannot create the index on device %s. "
"Total number of GPUs on this machine is "
"%s. Using the gpu0 for the index.",
device, faiss.get_num_gpus())
self._index = faiss.index_cpu_to_gpu(
gpu_resource, gpu_id, cpu_index)
else:
self._index = cpu_index
with open(f"{path}/index.meta_data", "rb") as f:
self._meta_data = pickle.load(f)
示例9: __init__
# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import index_cpu_to_gpu [as 別名]
def __init__(self,
target,
nprobe=128,
index_factory_str=None,
verbose=False,
mode='proxy',
using_gpu=True):
self._res_list = []
num_gpu = faiss.get_num_gpus()
print('[faiss gpu] #GPU: {}'.format(num_gpu))
size, dim = target.shape
assert size > 0, "size: {}".format(size)
index_factory_str = "IVF{},PQ{}".format(
min(8192, 16 * round(np.sqrt(size))),
32) if index_factory_str is None else index_factory_str
cpu_index = faiss.index_factory(dim, index_factory_str)
cpu_index.nprobe = nprobe
if mode == 'proxy':
co = faiss.GpuClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
index = faiss.IndexProxy()
for i in range(num_gpu):
res = faiss.StandardGpuResources()
self._res_list.append(res)
sub_index = faiss.index_cpu_to_gpu(
res, i, cpu_index, co) if using_gpu else cpu_index
index.addIndex(sub_index)
elif mode == 'shard':
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(cpu_index,
co,
ngpu=num_gpu)
else:
raise KeyError("Unknown index mode")
index = faiss.IndexIDMap(index)
index.verbose = verbose
# get nlist to decide how many samples used for training
nlist = int([
item for item in index_factory_str.split(",") if 'IVF' in item
][0].replace("IVF", ""))
# training
if not index.is_trained:
indexes_sample_for_train = np.random.randint(
0, size, nlist * 256)
index.train(target[indexes_sample_for_train])
# add with ids
target_ids = np.arange(0, size)
index.add_with_ids(target, target_ids)
self.index = index