當前位置: 首頁>>代碼示例>>Python>>正文


Python faiss.StandardGpuResources方法代碼示例

本文整理匯總了Python中faiss.StandardGpuResources方法的典型用法代碼示例。如果您正苦於以下問題:Python faiss.StandardGpuResources方法的具體用法?Python faiss.StandardGpuResources怎麽用?Python faiss.StandardGpuResources使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在faiss的用法示例。


在下文中一共展示了faiss.StandardGpuResources方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_knn_search

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def test_knn_search(size=10000, gpu_id=None):
    x = np.random.rand(size, 512)
    x = x.reshape(x.shape[0], -1).astype('float32')
    d = x.shape[1]

    tic = time.time()
    if gpu_id is None:
        index = faiss.IndexFlatL2(d)
    else:
        cfg = faiss.GpuIndexFlatConfig()
        cfg.useFloat16 = False
        cfg.device = gpu_id

        flat_config = [cfg]
        resources = [faiss.StandardGpuResources()]
        index = faiss.GpuIndexFlatL2(resources[0], d, flat_config[0])
    index.add(x)
    print('Index built in {} sec'.format(time.time() - tic))
    distances, I = index.search(x, 21)
    print('Searched in {} sec'.format(time.time() - tic))
    print(distances.shape)
    print(I.shape)
    print(distances[:5])
    print(I[:5]) 
開發者ID:CompVis,項目名稱:metric-learning-divide-and-conquer,代碼行數:26,代碼來源:faissext.py

示例2: test_nmi_faiss

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def test_nmi_faiss(embeddings, labels):
    res = faiss.StandardGpuResources()
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.device = 0

    unique_labels = np.unique(labels)
    d = embeddings.shape[1]
    kmeans = faiss.Clustering(d, unique_labels.size)
    kmeans.verbose = True
    kmeans.niter = 300
    kmeans.nredo = 10
    kmeans.seed = 0

    index = faiss.GpuIndexFlatL2(res, d, flat_config)

    kmeans.train(embeddings, index)

    dists, pred_labels = index.search(embeddings, 1)

    pred_labels = pred_labels.squeeze()

    nmi = normalized_mutual_info_score(labels, pred_labels)

    print("NMI: {}".format(nmi))
    return nmi 
開發者ID:azgo14,項目名稱:classification_metric_learning,代碼行數:27,代碼來源:nmi.py

示例3: train_coarse_quantizer

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def train_coarse_quantizer(data, quantizer_path, num_clusters, hnsw=False, niter=10, cuda=False):
    d = data.shape[1]

    index_flat = faiss.IndexFlatL2(d)
    # make it into a gpu index
    if cuda:
        res = faiss.StandardGpuResources()
        index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
    clus = faiss.Clustering(d, num_clusters)
    clus.verbose = True
    clus.niter = niter
    clus.train(data, index_flat)
    centroids = faiss.vector_float_to_array(clus.centroids)
    centroids = centroids.reshape(num_clusters, d)

    if hnsw:
        quantizer = faiss.IndexHNSWFlat(d, 32)
        quantizer.hnsw.efSearch = 128
        quantizer.train(centroids)
        quantizer.add(centroids)
    else:
        quantizer = faiss.IndexFlatL2(d)
        quantizer.add(centroids)

    faiss.write_index(quantizer, quantizer_path) 
開發者ID:uwnlp,項目名稱:denspi,代碼行數:27,代碼來源:run_index.py

示例4: train_index

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def train_index(data, quantizer_path, trained_index_path, fine_quant='SQ8', cuda=False):
    quantizer = faiss.read_index(quantizer_path)
    if fine_quant == 'SQ8':
        trained_index = faiss.IndexIVFScalarQuantizer(quantizer, quantizer.d, quantizer.ntotal, faiss.METRIC_L2)
    elif fine_quant.startswith('PQ'):
        m = int(fine_quant[2:])
        trained_index = faiss.IndexIVFPQ(quantizer, quantizer.d, quantizer.ntotal, m, 8)
    else:
        raise ValueError(fine_quant)

    if cuda:
        if fine_quant.startswith('PQ'):
            print('PQ not supported on GPU; keeping CPU.')
        else:
            res = faiss.StandardGpuResources()
            gpu_index = faiss.index_cpu_to_gpu(res, 0, trained_index)
            gpu_index.train(data)
            trained_index = faiss.index_gpu_to_cpu(gpu_index)
    else:
        trained_index.train(data)
    faiss.write_index(trained_index, trained_index_path) 
開發者ID:uwnlp,項目名稱:denspi,代碼行數:23,代碼來源:run_index.py

示例5: __init__

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def __init__(self, cell_size=20, nr_cells=1024, K=4, num_lists=32, probes=32, res=None, train=None, gpu_id=-1):
    super(FAISSIndex, self).__init__()
    self.cell_size = cell_size
    self.nr_cells = nr_cells
    self.probes = probes
    self.K = K
    self.num_lists = num_lists
    self.gpu_id = gpu_id

    # BEWARE: if this variable gets deallocated, FAISS crashes
    self.res = res if res else faiss.StandardGpuResources()
    self.res.setTempMemoryFraction(0.01)
    if self.gpu_id != -1:
      self.res.initializeForDevice(self.gpu_id)

    nr_samples = self.nr_cells * 100 * self.cell_size
    train = train if train is not None else T.randn(self.nr_cells * 100, self.cell_size)

    self.index = faiss.GpuIndexIVFFlat(self.res, self.cell_size, self.num_lists, faiss.METRIC_L2)
    self.index.setNumProbes(self.probes)
    self.train(train) 
開發者ID:ixaxaar,項目名稱:pytorch-dnc,代碼行數:23,代碼來源:faiss_index.py

示例6: _index_to_gpu

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def _index_to_gpu(index, device_id):  # pragma: no cover
    res = faiss.StandardGpuResources()
    return faiss.index_cpu_to_gpu(res, device_id, index) 
開發者ID:mars-project,項目名稱:mars,代碼行數:5,代碼來源:_faiss.py

示例7: reserve_faiss_gpu_memory

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def reserve_faiss_gpu_memory(gpu_id=0):
    """
    Reserves around 2.4 Gb memory on Titan Xp.
    `r = reserve_faiss_gpu_memory()`
    To release the memory run `del r`

    Something like 200 Mb will still be hold afterwards.
    """
    res = faiss.StandardGpuResources()
    cfg = faiss.GpuIndexFlatConfig()
    cfg.useFloat16 = False
    cfg.device = gpu_id
    index = faiss.GpuIndexFlatL2(res, 2048, cfg)
    return index, res 
開發者ID:CompVis,項目名稱:metric-learning-divide-and-conquer,代碼行數:16,代碼來源:faissext.py

示例8: run_kmeans

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def run_kmeans(x, nmb_clusters, verbose=False):
    """Runs kmeans on 1 GPU.
    Args:
        x: data
        nmb_clusters (int): number of clusters
    Returns:
        list: ids of data in each cluster
    """
    n_data, d = x.shape

    # faiss implementation of k-means
    clus = faiss.Clustering(d, nmb_clusters)

    # Change faiss seed at each k-means so that the randomly picked
    # initialization centroids do not correspond to the same feature ids
    # from an epoch to another.
    clus.seed = np.random.randint(1234)

    clus.niter = 20
    clus.max_points_per_centroid = 10000000
    res = faiss.StandardGpuResources()
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.useFloat16 = False
    flat_config.device = 0
    index = faiss.GpuIndexFlatL2(res, d, flat_config)

    # perform the training
    clus.train(x, index)
    _, I = index.search(x, 1)
    losses = faiss.vector_to_array(clus.obj)
    if verbose:
        print('k-means loss evolution: {0}'.format(losses))

    return [int(n[0]) for n in I], losses[-1] 
開發者ID:XiaohangZhan,項目名稱:cdp,代碼行數:36,代碼來源:faiss_kmeans.py

示例9: knn_faiss

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def knn_faiss(feats, k):
    import torch
    import faiss
    import pdb
    N, dim = feats.shape
    res = faiss.StandardGpuResources()
    feats /= np.linalg.norm(feats).reshape(-1, 1)
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.device = int(torch.cuda.device_count()) - 1
    index = faiss.GpuIndexFlatL2(res, dim, flat_config)
    index.add(feats)
    D, I = index.search(feats, k + 1)
    pdb.set_trace() 
開發者ID:XiaohangZhan,項目名稱:cdp,代碼行數:15,代碼來源:knn.py

示例10: __init__

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def __init__(self, opt):
        super(ChamferLoss, self).__init__()
        self.opt = opt
        self.dimension = 3
        self.k = 1

        # we need only a StandardGpuResources per GPU
        self.res = faiss.StandardGpuResources()
        self.res.setTempMemoryFraction(0.1)
        self.flat_config = faiss.GpuIndexFlatConfig()
        self.flat_config.device = opt.gpu_id

        # place holder
        self.forward_loss = torch.FloatTensor([0])
        self.backward_loss = torch.FloatTensor([0]) 
開發者ID:lijx10,項目名稱:SO-Net,代碼行數:17,代碼來源:losses.py

示例11: get_nn_avg_dist

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def get_nn_avg_dist(emb, query, knn):
    """
    Compute the average distance of the `knn` nearest neighbors
    for a given set of embeddings and queries.
    Use Faiss if available.
    """
    if FAISS_AVAILABLE:
        emb = emb.cpu().numpy()
        query = query.cpu().numpy()
        if hasattr(faiss, 'StandardGpuResources'):
            # gpu mode
            res = faiss.StandardGpuResources()
            config = faiss.GpuIndexFlatConfig()
            config.device = 0
            index = faiss.GpuIndexFlatIP(res, emb.shape[1], config)
        else:
            # cpu mode
            index = faiss.IndexFlatIP(emb.shape[1])
        index.add(emb)
        distances, _ = index.search(query, knn)
        return distances.mean(1)
    else:
        bs = 1024
        all_distances = []
        emb = emb.transpose(0, 1).contiguous()
        for i in range(0, query.shape[0], bs):
            distances = query[i:i + bs].mm(emb)
            best_distances, _ = distances.topk(knn, dim=1, largest=True, sorted=True)
            all_distances.append(best_distances.mean(1).cpu())
        all_distances = torch.cat(all_distances)
        return all_distances.numpy() 
開發者ID:violet-zct,項目名稱:DeMa-BWE,代碼行數:33,代碼來源:utils.py

示例12: BuildKNNGraphByFAISS_GPU

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def BuildKNNGraphByFAISS_GPU(db,k):
    dbsize, dim = db.shape
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.device = 0
    res = faiss.StandardGpuResources()
    nn = faiss.GpuIndexFlatL2(res, dim, flat_config)
    nn.add(db)
    dists,idx = nn.search(db, k+1)
    return idx[:,1:],dists[:,1:] 
開發者ID:DagnyT,項目名稱:hardnet,代碼行數:11,代碼來源:HardNetClassicalHardNegMiningSiftInit.py

示例13: __init__

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def __init__(self, n_bits, n_probes):
        self.name = 'FaissGPU(n_bits={}, n_probes={})'.format(
            n_bits, n_probes)
        self._n_bits = n_bits
        self._n_probes = n_probes
        self._res = faiss.StandardGpuResources()
        self._index = None 
開發者ID:erikbern,項目名稱:ann-benchmarks,代碼行數:9,代碼來源:faiss_gpu.py

示例14: _retrieve_knn_faiss_gpu_inner_product

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def _retrieve_knn_faiss_gpu_inner_product(query_embeddings, db_embeddings, k, gpu_id=0):
    """
        Retrieve k nearest neighbor based on inner product

        Args:
            query_embeddings:           numpy array of size [NUM_QUERY_IMAGES x EMBED_SIZE]
            db_embeddings:              numpy array of size [NUM_DB_IMAGES x EMBED_SIZE]
            k:                          number of nn results to retrieve excluding query
            gpu_id:                     gpu device id to use for nearest neighbor (if possible for `metric` chosen)

        Returns:
            dists:                      numpy array of size [NUM_QUERY_IMAGES x k], distances of k nearest neighbors
                                        for each query
            retrieved_db_indices:       numpy array of size [NUM_QUERY_IMAGES x k], indices of k nearest neighbors
                                        for each query
    """
    import faiss

    res = faiss.StandardGpuResources()
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.device = gpu_id

    # Evaluate with inner product
    index = faiss.GpuIndexFlatIP(res, db_embeddings.shape[1], flat_config)
    index.add(db_embeddings)
    # retrieved k+1 results in case that query images are also in the db
    dists, retrieved_result_indices = index.search(query_embeddings, k + 1)

    return dists, retrieved_result_indices 
開發者ID:azgo14,項目名稱:classification_metric_learning,代碼行數:31,代碼來源:retrieval.py

示例15: _retrieve_knn_faiss_gpu_euclidean

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import StandardGpuResources [as 別名]
def _retrieve_knn_faiss_gpu_euclidean(query_embeddings, db_embeddings, k, gpu_id=0):
    """
        Retrieve k nearest neighbor based on inner product

        Args:
            query_embeddings:           numpy array of size [NUM_QUERY_IMAGES x EMBED_SIZE]
            db_embeddings:              numpy array of size [NUM_DB_IMAGES x EMBED_SIZE]
            k:                          number of nn results to retrieve excluding query
            gpu_id:                     gpu device id to use for nearest neighbor (if possible for `metric` chosen)

        Returns:
            dists:                      numpy array of size [NUM_QUERY_IMAGES x k], distances of k nearest neighbors
                                        for each query
            retrieved_db_indices:       numpy array of size [NUM_QUERY_IMAGES x k], indices of k nearest neighbors
                                        for each query
    """
    import faiss

    res = faiss.StandardGpuResources()
    flat_config = faiss.GpuIndexFlatConfig()
    flat_config.device = gpu_id

    # Evaluate with inner product
    index = faiss.GpuIndexFlatL2(res, db_embeddings.shape[1], flat_config)
    index.add(db_embeddings)
    # retrieved k+1 results in case that query images are also in the db
    dists, retrieved_result_indices = index.search(query_embeddings, k + 1)

    return dists, retrieved_result_indices 
開發者ID:azgo14,項目名稱:classification_metric_learning,代碼行數:31,代碼來源:retrieval.py


注:本文中的faiss.StandardGpuResources方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。