當前位置: 首頁>>代碼示例>>Python>>正文


Python faiss.IndexFlatL2方法代碼示例

本文整理匯總了Python中faiss.IndexFlatL2方法的典型用法代碼示例。如果您正苦於以下問題:Python faiss.IndexFlatL2方法的具體用法?Python faiss.IndexFlatL2怎麽用?Python faiss.IndexFlatL2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在faiss的用法示例。


在下文中一共展示了faiss.IndexFlatL2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_knn_search

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def test_knn_search(size=10000, gpu_id=None):
    x = np.random.rand(size, 512)
    x = x.reshape(x.shape[0], -1).astype('float32')
    d = x.shape[1]

    tic = time.time()
    if gpu_id is None:
        index = faiss.IndexFlatL2(d)
    else:
        cfg = faiss.GpuIndexFlatConfig()
        cfg.useFloat16 = False
        cfg.device = gpu_id

        flat_config = [cfg]
        resources = [faiss.StandardGpuResources()]
        index = faiss.GpuIndexFlatL2(resources[0], d, flat_config[0])
    index.add(x)
    print('Index built in {} sec'.format(time.time() - tic))
    distances, I = index.search(x, 21)
    print('Searched in {} sec'.format(time.time() - tic))
    print(distances.shape)
    print(I.shape)
    print(distances[:5])
    print(I[:5]) 
開發者ID:CompVis,項目名稱:metric-learning-divide-and-conquer,代碼行數:26,代碼來源:faissext.py

示例2: cluster

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def cluster(vectorized, ncentroids):
    import faiss
    x = vectorized
    niter = 50
    verbose = True
    d = x.shape[1]
    kmeans = faiss.Kmeans(d, ncentroids, niter=niter, verbose=verbose)
    kmeans.train(x)

    # for i, v in enumerate(kmeans.centroids):
    #     print(i)

    index = faiss.IndexFlatL2(d)
    index.add(x)
    D, I = index.search(kmeans.centroids, 1)
    x_reduced = x[I, :].squeeze()
    return x_reduced 
開發者ID:natolambert,項目名稱:dynamicslearn,代碼行數:19,代碼來源:data.py

示例3: _build_approximate_index

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def _build_approximate_index(self,
                                     data: np.ndarray):
            dimensionality = data.shape[1]
            nlist = 100 if data.shape[0] > 100 else 2

            if self.kernel_name in {'rbf'}:
                quantizer = faiss.IndexFlatL2(dimensionality)
                cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist, faiss.METRIC_L2)
            else:
                quantizer = faiss.IndexFlatIP(dimensionality)
                cpu_index_flat = faiss.IndexIVFFlat(quantizer, dimensionality, nlist)

            gpu_index_ivf = faiss.index_cpu_to_gpu(self.resource, 0, cpu_index_flat)
            gpu_index_ivf.train(data)
            gpu_index_ivf.add(data)
            self.index = gpu_index_ivf 
開發者ID:uclnlp,項目名稱:gntp,代碼行數:18,代碼來源:faiss.py

示例4: train_coarse_quantizer

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def train_coarse_quantizer(data, quantizer_path, num_clusters, hnsw=False, niter=10, cuda=False):
    d = data.shape[1]

    index_flat = faiss.IndexFlatL2(d)
    # make it into a gpu index
    if cuda:
        res = faiss.StandardGpuResources()
        index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
    clus = faiss.Clustering(d, num_clusters)
    clus.verbose = True
    clus.niter = niter
    clus.train(data, index_flat)
    centroids = faiss.vector_float_to_array(clus.centroids)
    centroids = centroids.reshape(num_clusters, d)

    if hnsw:
        quantizer = faiss.IndexHNSWFlat(d, 32)
        quantizer.hnsw.efSearch = 128
        quantizer.train(centroids)
        quantizer.add(centroids)
    else:
        quantizer = faiss.IndexFlatL2(d)
        quantizer.add(centroids)

    faiss.write_index(quantizer, quantizer_path) 
開發者ID:uwnlp,項目名稱:denspi,代碼行數:27,代碼來源:run_index.py

示例5: initialize_celeb

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def initialize_celeb(self):
        print("Initializing celebrity network...")

        with CustomObjectScope({'relu6': keras.layers.ReLU(6.),
                                'DepthwiseConv2D': keras.layers.DepthwiseConv2D,
                                'lifted_struct_loss': lifted_struct_loss,
                                'triplet_loss': triplet_loss}):
            self.siameseNet = keras.models.load_model(os.path.join(self.siamesepath, "feature_model.h5"))

        self.siameseNet._make_predict_function()

        ##### Read celebrity features
        celebrity_features = self.siamesepath + os.sep + "features_" + self.celeb_dataset + ".h5"
        print("Reading celebrity data from {}...".format(celebrity_features))

        with h5py.File(celebrity_features, "r") as h5:
            celeb_features = np.array(h5["features"]).astype(np.float32)
            self.path_ends = list(h5["path_ends"])
            self.celeb_files = [os.path.join(self.visualization_path, s.decode("utf-8")) for s in self.path_ends]

        print("Building index...")
        self.celeb_index = faiss.IndexFlatL2(celeb_features.shape[1])
        self.celeb_index.add(celeb_features) 
開發者ID:mahehu,項目名稱:TUT-live-age-estimator,代碼行數:25,代碼來源:RecognitionThread.py

示例6: create_tree

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def create_tree(data,approx,metric,use_faiss,n_trees):
	'''
	Create a faiss/cKDTree/KDTree/annoy index for nearest neighbour lookup. All undescribed input
	as in ``bbknn.bbknn()``. Returns the resulting index.

	Input
	-----
	data : ``numppy.array``
		PCA coordinates of a batch's cells to index.
	'''
	if approx:
		ckd = AnnoyIndex(data.shape[1],metric=metric)
		for i in np.arange(data.shape[0]):
			ckd.add_item(i,data[i,:])
		ckd.build(n_trees)
	elif metric == 'euclidean':
		if 'faiss' in sys.modules and use_faiss:
			ckd = faiss.IndexFlatL2(data.shape[1])
			ckd.add(data)
		else:
			ckd = cKDTree(data)
	else:
		ckd = KDTree(data,metric=metric)
	return ckd 
開發者ID:Teichlab,項目名稱:bbknn,代碼行數:26,代碼來源:__init__.py

示例7: recover_closest_one_dataset

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def recover_closest_one_dataset(feature_matrix_all, image_paths, save_path, n_image_samples=10, n_closest=3):
    """
    Provide sample recoveries.

    Args:
        feature_matrix_all: np.ndarray [n_samples x embed_dim], full data embedding of test samples.
        image_paths:        list [n_samples], list of datapaths corresponding to <feature_matrix_all>
        save_path:          str, where to store sample image.
        n_image_samples:    Number of sample recoveries.
        n_closest:          Number of closest recoveries to show.
    Returns:
        Nothing!
    """
    image_paths = np.array([x[0] for x in image_paths])
    sample_idxs = np.random.choice(np.arange(len(feature_matrix_all)), n_image_samples)

    faiss_search_index = faiss.IndexFlatL2(feature_matrix_all.shape[-1])
    faiss_search_index.add(feature_matrix_all)
    _, closest_feature_idxs = faiss_search_index.search(feature_matrix_all, n_closest+1)

    sample_paths = image_paths[closest_feature_idxs][sample_idxs]

    f,axes = plt.subplots(n_image_samples, n_closest+1)
    for i,(ax,plot_path) in enumerate(zip(axes.reshape(-1), sample_paths.reshape(-1))):
        ax.imshow(np.array(Image.open(plot_path)))
        ax.set_xticks([])
        ax.set_yticks([])
        if i%(n_closest+1):
            ax.axvline(x=0, color='g', linewidth=13)
        else:
            ax.axvline(x=0, color='r', linewidth=13)
    f.set_size_inches(10,20)
    f.tight_layout()
    f.savefig(save_path)
    plt.close()


####### RECOVER CLOSEST EXAMPLE IMAGES ####### 
開發者ID:Confusezius,項目名稱:Deep-Metric-Learning-Baselines,代碼行數:40,代碼來源:auxiliaries.py

示例8: recover_closest_inshop

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def recover_closest_inshop(query_feature_matrix_all, gallery_feature_matrix_all, query_image_paths, gallery_image_paths, save_path, n_image_samples=10, n_closest=3):
    """
    Provide sample recoveries.

    Args:
        query_feature_matrix_all:   np.ndarray [n_query_samples x embed_dim], full data embedding of query samples.
        gallery_feature_matrix_all: np.ndarray [n_gallery_samples x embed_dim], full data embedding of gallery samples.
        query_image_paths:          list [n_samples], list of datapaths corresponding to <query_feature_matrix_all>
        gallery_image_paths:        list [n_samples], list of datapaths corresponding to <gallery_feature_matrix_all>
        save_path:          str, where to store sample image.
        n_image_samples:    Number of sample recoveries.
        n_closest:          Number of closest recoveries to show.
    Returns:
        Nothing!
    """
    query_image_paths, gallery_image_paths   = np.array(query_image_paths), np.array(gallery_image_paths)
    sample_idxs = np.random.choice(np.arange(len(query_feature_matrix_all)), n_image_samples)

    faiss_search_index = faiss.IndexFlatL2(gallery_feature_matrix_all.shape[-1])
    faiss_search_index.add(gallery_feature_matrix_all)
    _, closest_feature_idxs = faiss_search_index.search(query_feature_matrix_all, n_closest)

    image_paths  = gallery_image_paths[closest_feature_idxs]
    image_paths  = np.concatenate([query_image_paths.reshape(-1,1), image_paths],axis=-1)

    sample_paths = image_paths[closest_feature_idxs][sample_idxs]

    f,axes = plt.subplots(n_image_samples, n_closest+1)
    for i,(ax,plot_path) in enumerate(zip(axes.reshape(-1), sample_paths.reshape(-1))):
        ax.imshow(np.array(Image.open(plot_path)))
        ax.set_xticks([])
        ax.set_yticks([])
        if i%(n_closest+1):
            ax.axvline(x=0, color='g', linewidth=13)
        else:
            ax.axvline(x=0, color='r', linewidth=13)
    f.set_size_inches(10,20)
    f.tight_layout()
    f.savefig(save_path)
    plt.close() 
開發者ID:Confusezius,項目名稱:Deep-Metric-Learning-Baselines,代碼行數:42,代碼來源:auxiliaries.py

示例9: compute_cluster_assignment

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def compute_cluster_assignment(centroids, x):
    assert centroids is not None, "should train before assigning"
    d = centroids.shape[1]
    index = faiss.IndexFlatL2(d)
    index.add(centroids)
    distances, labels = index.search(x, 1)
    return labels.ravel() 
開發者ID:CompVis,項目名稱:metric-learning-divide-and-conquer,代碼行數:9,代碼來源:faissext.py

示例10: build_nn_index

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def build_nn_index(self, database):
        '''
        :param database: numpy array of Nx3
        :return: Faiss index, in CPU
        '''
        index = faiss.IndexFlatL2(self.dimension)  # dimension is 3
        index.add(database)
        return index 
開發者ID:lijx10,項目名稱:SO-Net,代碼行數:10,代碼來源:modelnet_shrec_loader.py

示例11: build_nn_index

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def build_nn_index(self, database):
        '''
        :param database: numpy array of Nx3
        :return: Faiss index, in CPU
        '''
        # index = faiss.GpuIndexFlatL2(self.res, self.dimension, self.flat_config)  # dimension is 3
        index_cpu = faiss.IndexFlatL2(self.dimension)
        index = faiss.index_cpu_to_gpu(self.res, self.opt.gpu_id, index_cpu)
        index.add(database)
        return index 
開發者ID:lijx10,項目名稱:SO-Net,代碼行數:12,代碼來源:losses.py

示例12: main

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def main():
    index_dirs = [
        '../exp/v2clean/feats_index19_ms_L2_ep4_freqthresh-3_loss-arcface_verifythresh-30/']
    test_dirs = [
        '../exp/v2clean/feats_test19_ms_L2_ep4_freqthresh-3_loss-arcface_verifythresh-30/']
    train_dirs = [
        '../exp/v2clean/feats_train_ms_L2_ep4_freqthresh-3_loss-arcface_verifythresh-30/']

    ids_index, feats_index = utils.prepare_ids_and_feats(index_dirs, normalize=True)
    ids_test, feats_test = utils.prepare_ids_and_feats(test_dirs, normalize=True)
    ids_train, feats_train = utils.prepare_ids_and_feats(train_dirs, normalize=True)

    print('build index...')
    cpu_index = faiss.IndexFlatL2(feats_index.shape[1])
    gpu_index = faiss.index_cpu_to_all_gpus(cpu_index)
    gpu_index.add(feats_index)
    dists, topk_idx = gpu_index.search(x=feats_test, k=100)
    print('query search done.')

    subm = pd.DataFrame(ids_test, columns=['id'])
    subm['images'] = np.apply_along_axis(' '.join, axis=1, arr=ids_index[topk_idx])

    subm = reranking_submission(ids_index, feats_index,
                                ids_test, feats_test,
                                ids_train, feats_train,
                                subm, topk=100)

    output_name = ROOT + f'output/submit_retrieval.csv.gz'
    subm[['id', 'images']].to_csv(output_name, compression='gzip', index=False)
    print('saved to ' + output_name)

    cmd = f'kaggle c submit -c landmark-retrieval-2019 -f {output_name} -m "" '
    print(cmd)
    subprocess.run(cmd, shell=True) 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:36,代碼來源:submit_retrieval.py

示例13: get_df_and_dists

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def get_df_and_dists(topk=100):
    test_dirs = [
        ROOT + 'exp/v19c/feats_test19_ms_L2_ep4_scaleup_ep3_freqthresh-2_loss-cosface_pooling-G,G,G,G_verifythresh-30/',
        ROOT + 'exp/v20c/feats_test19_ms_L2_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-arcface_verifythresh-30/',
        ROOT + 'exp/v21c/feats_test19_ms_L2_ep6_scaleup_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-arcface_verifythresh-30/',
        ROOT + 'exp/v22c/feats_test19_ms_L2_ep4_scaleup_ep3_base_margin-0.4_freqthresh-2_verifythresh-30/',
        ROOT + 'exp/v23c/feats_test19_ms_L2_ep6_scaleup_ep5_augmentation-middle_epochs-7_freqthresh-3_verifythresh-30/',
        ROOT + 'exp/v24c/feats_test19_ms_L2_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-cosface_verifythresh-30/',
    ]
    train_dirs = [
        ROOT + 'exp/v19c/feats_train_ms_L2_ep4_scaleup_ep3_freqthresh-2_loss-cosface_pooling-G,G,G,G_verifythresh-30/',
        ROOT + 'exp/v20c/feats_train_ms_L2_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-arcface_verifythresh-30/',
        ROOT + 'exp/v21c/feats_train_ms_L2_ep6_scaleup_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-arcface_verifythresh-30/',
        ROOT + 'exp/v22c/feats_train_ms_L2_ep4_scaleup_ep3_base_margin-0.4_freqthresh-2_verifythresh-30/',
        ROOT + 'exp/v23c/feats_train_ms_L2_ep6_scaleup_ep5_augmentation-middle_epochs-7_freqthresh-3_verifythresh-30/',
        ROOT + 'exp/v24c/feats_train_ms_L2_ep5_augmentation-middle_epochs-7_freqthresh-3_loss-cosface_verifythresh-30/',
    ]
    weights = [
        0.5,
        1.0,
        1.0,
        0.5,
        1.0,
        1.0,
    ]

    logger.info('load ids and features.')
    ids_test, feats_test = utils.prepare_ids_and_feats(test_dirs, weights, normalize=True)
    ids_train, feats_train = utils.prepare_ids_and_feats(train_dirs, weights, normalize=True)
    logger.info('done.')

    logger.info('build index...')
    cpu_index = faiss.IndexFlatL2(feats_train.shape[1])
    cpu_index.add(feats_train)
    dists, topk_idx = cpu_index.search(x=feats_test, k=topk)
    logger.info('query search done.')

    df = pd.DataFrame(ids_test, columns=['id'])
    df['images'] = np.apply_along_axis(' '.join, axis=1, arr=ids_train[topk_idx])

    return df, dists 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:43,代碼來源:submit_recognition.py

示例14: euclidean_search_test

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def euclidean_search_test(fn_npy):
    ds = load_train_ensemble_dataset()

    cpu_index = faiss.IndexFlatL2(ds[f'feats_train'].shape[1])
    cpu_index.add(ds[f'feats_train'])

    _, all_ranks = cpu_index.search(x=ds[f'feats_test'], k=100)
    Path(fn_npy).parent.mkdir(parents=True, exist_ok=True)
    np.save(fn_npy, all_ranks) 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:11,代碼來源:matching_localfeatures.py

示例15: __init__

# 需要導入模塊: import faiss [as 別名]
# 或者: from faiss import IndexFlatL2 [as 別名]
def __init__(self, database, method):
        super().__init__(database, method)
        self.index = {'cosine': faiss.IndexFlatIP,
                      'euclidean': faiss.IndexFlatL2}[method](self.D)
        if os.environ.get('CUDA_VISIBLE_DEVICES'):
            print('CUDA', os.environ.get('CUDA_VISIBLE_DEVICES'))
            self.index = faiss.index_cpu_to_all_gpus(self.index)
        self.add() 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:10,代碼來源:reranking.py


注:本文中的faiss.IndexFlatL2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。